首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive reversed‐phase high‐performance liquid chromatographic (RP‐HPLC) method was developed to investigate pharmacokinetics of columbianadin, one of the main bioactive constituents in the roots of Angelica pubescens f. biserrata, in rat plasma after intravenous administration to rats at two doses of 10 and 20 mg/kg. The method involves a plasma clean‐up step using liquid–liquid extraction by diethyl ether, followed by RP‐HPLC separation and detection. Separation of columbianadin was performed on an analytical Diamonsil? ODS C18 column, with a mobile phase of MeOH–H2O (85 : 15, v/v) at a flow‐rate of 1.0 mL/min, and UV detection was set at 325 nm. The retention time of columbianadin and scoparone (internal standard) was 6.7 and 3.5 min, respectively. The calibration curve was linear over the range of 0.2–20.0 μg/mL (r2 = 0.9986) in rat plasma. The lower limits of detection and quantification were 0.05 and 0.1 μg/mL, respectively. The extraction recovery from plasma was in the range of 81.61–89.93%. The intra‐ and inter‐day precisions (relative standard deviation) were between 1.01 and 9.33%, with accuracies ranging from 89.76 to 109.22%. The results indicated that the method established was suitable for the determination and pharmacokinetic study of columbianadin in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
反相高效液相色谱法同时测定独活中莨菪亭和伞形花内酯   总被引:2,自引:0,他引:2  
用反相高效液相色谱法建立了独活中莨菪亭和伞形花内酯的分离,测定的方法,采用ODS柱,甲醇-四氢呋喃-乙酸(35:60:5:0.6V/V)流动相,检测波长337nm,对四川,陕西,湖北等地区的独活样品进行了测定,并为中药独活的质量评价提供了科学依据。  相似文献   

3.
独活挥发油化学成分的气相色谱-质谱法测定   总被引:5,自引:1,他引:5  
采用水蒸气蒸馏法从独活中提取挥发油。采用不同类型的毛细管柱进行分析 ,找出最佳分析条件 ,共分离出50个峰 ,用归一化法测定其相对含量 ,并用气相色谱 -质谱法对化学成分进行鉴定 ,共鉴定了40个成分 ,占挥发油总成分的80 %以上。  相似文献   

4.
This present study was designed to investigate the pharmacokinetic profiles and tissue distribution characteristics of clevidipine and its primary metabolite H152/81 in rats following a single intravenous administration of clevidipine butyrate injectable emulsion. For this study, a sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was established and validated for the simultaneous quantitation of clevidipine and H152/81 in rat whole blood and various tissues. A Hedera ODS‐2 column with two gradient elution programs was employed for the troubleshooting of matrix effect on the detection of analytes among different biological samples. The experimental data showed that clevidipine represented quick elimination from blood with a half‐life of about 4.3 min and rapid distribution in all of the investigated tissues after administration; the highest concentration of clevidipine was found in the heart whereas the lowest concentration was detected in the liver. In addition, clevidipine was almost undetectable in most tissues except for heart and brain at 90 min post‐dosing, suggesting that there was no apparent long‐term accumulation in rat tissues. For H152/81, the peak concentration of 3714 ± 319 ng/mL occurred at 0.129 ± 0.048 h, the half‐life was 10.08 ± 1.45 h and area under the concentration–time curve was 42091 ± 3812 ng h/mL after drug administration. In addition, H152/81 was found at significant concentration levels in all tissues, in descending order of lung, kidney, heart, liver, spleen and brain at each time point. The results of current study offer useful clues for better understanding the distribution and metabolism of clevidipine butyrate injectable emulsion in vivo.  相似文献   

5.
Periplocin is a cardiac glycoside and has been used widely in the clinic for its cardiotonic, anti‐inflammatory and anti‐tumor effects. Although it is taken frequently by oral administration in the clinic, there have been no reports demonstrating that periplocin could be detected in vivo after an oral administration, so there is an urgen need to determine the characteristics of periplocin in vivo after oral administration. In this study, a sensitive and reliable liquid chromatography–tandem mass spectrometry method was developed and validated to identify and quantify periplocin and its two metabolites in rat tissue after a single dosage of perplocin at 50 mg/kg. The results demonstrated that periplocin and its two metabolites were detected in all of the selected tissues; periplocin could reach peak concentration quickly after administration, while periplocymarin and periplogenin reached maximum concentration > 4.83 h after administration. The tissue distribution of analytes tended to be mostly in the liver, and higher analyte concentrations were found in the heart, liver, spleen, lung and kidney, but a small amount of chemical constituents was distributed into the brain. The consequences obtained using this method might provide a meaningful insight for clinical investigations and applications.  相似文献   

6.
Hawthorn leaves, a well‐known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin‐4′′‐O‐glucoside, vitexin‐2′′‐O‐rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter‐ and intragroup comparisons (healthy and/or fatty liver group). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid, sensitive and selective high performance liquid chromatography (HPLC) method was developed and validated for determination of loganin in rat tissues. Samples were prepared based on a simple protein precipitation. Separation of loganin was achieved on a reversed-phase C(18) column (250 x 4.6 mm, 5 microm) with a mobile phase consisting of acetonitrile and water (16:84, v/v) at a flow rate of 1.0 mL/min. The detection wavelength was set at 236 nm and the temperature of the column was kept at 30 degrees C. The method was applied to study tissue distribution of loganin in rats after a single administration of loganin at a dose of 20 mg/kg. The highest level was observed in kidney, then in stomach, lung and small intestine. The lowest level was found in brain. The peak levels were attained at 90 min in most tissues. It was indicated that kidney was the major distribution tissue of loganin in rats, and that loganin had difficulty in crossing the blood-brain barrier. It was also found there was no long-term accumulation of loganin in rat tissues.  相似文献   

8.
An RP-HPLC method for the analysis of adenosine (ADO) has been developed and validated. In the present study, we report an RP-HPLC-based method with modifications of mobile phase and shorter retention time that substantially improved the efficiency of ADO analysis. The HPLC separation of the ADO was achieved on a C18 column, using a mobile phase consisting of water, containing 7% v/v ACN, at a flow rate of 0.8 mL/min. The column effluent was monitored by UV detection at 260 nm. A linear response was achieved over the concentration range of 0.25-100.00 micromol/L. The analytical method inter- and intra-run accuracy and precision were better than +/- 15%. The LOQ was 0.25 micromol/L, with ADO detection in the range of 6.25 pmol per sample. The method has been applied to the study of adenosine kinase (AK) kinetics.  相似文献   

9.
A validated reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the determination of bergenin in rat plasma. Bergenin in rat plasma was extracted with methanol, which also acted as a deproteinization agent. Chromatographic separation of bergenin was performed on a C(18) column, with a mobile phase of methanol-water (22:78, v/v) at a flow-rate of 0.8 mL/min and an operating temperature of 40 degrees C, and UV detection was set at 220 nm. The calibration curve was linear over the range 0.25-50 microg/mL (r = 0.9990) in rat plasma. The limit of quantification was 0.25 microg/mL using a plasma sample of 100 microL. The extraction recoveries were 83.40 +/- 6.02, 81.49 +/- 2.40 and 72.51 +/- 2.64% at concentrations of 0.5, 5 and 50 microg/mL, respectively. The intra-day and inter-day precision and accuracy were validated by relative standard deviation (RSD%) and relative error (RE%), which were in the ranges 3.74-9.91 and -1.6-8.0%. After intravenous administration to rats at the dose of 11.25 mg/kg, the plasma concentration-time curve of bergenin was best conformed to a two-compartment open model. The main pharmacokinetic parameters indicated that bergenin exhibited a wide distribution and moderate elimination velocity in rat.  相似文献   

10.
A rapid and simple reverse‐phase high‐performance liquid chromatography (RP‐HPLC) was developed and validated for the quantification of kirenol in rat plasma after oral administration. Kirenol and darutoside (internal standard, IS) were extracted from rat plasma using Cleanert™ C18 solid‐phase extraction (SPE) cartridge. Analysis of the extraction was performed on a Thermo ODS‐2 Hypersil C18 reversed‐phase column with a gradient eluent composed of acetonitrile and 0.1% phosphoric acid. The flow rate was 1.0 mL/min and the detection wavelength was set at 215 nm. The calibration curve was linear over the range of 9.756–133.333 µg/mL (r2 = 0.9991) in rat plasma. The lower limits of detection and quantification were 2.857 and 9.756 µg/mL, respectively. The intra‐ and inter‐day precisions (relative standard deviation, RSD) were between 2.24 and 4.46%, with accuracies ranging from 91.80 to 102.74%. The extraction recovery ranged from 98.16 to 107.62% with RSD less than 4.81%. Stability studies showed that kirenol was stable in preparation and analytical process. The present method was successfully applied to the pharmacokinetic study of kirenol in male Sprague–Dawley rats after oral administration at a dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
ZLR-8 is a nitric oxide releasing derivative of diclofenac for the treatment of inflammation. In this paper, a sensitive and reliable high-performance liquid chromatography method for simultaneous determination of ZLR-8 and its active metabolite diclofenac in the plasma of beagle dogs has been developed and validated. After the addition of ketoprofen as the internal standard (IS), plasma samples were extracted with n-hexane-isopropanol (95:5, v/v) mixture solution and separated by HPLC on a reversed-phase C(18) column with a mobile phase of gradient procedure. Analytes were determined by the UV detector which was set at 280 nm. The method was proved to be sensitive and specific by testing six different plasma batches. Calibration curves of ZLR-8 and diclofenac were linear over the range 0.05-4.0 microg/mL. The within- and between-batch precisions (RSD%) were lower than 10% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.05 microg/mL. The proposed method has been readily implemented in preclinical pharmacokinetics studies of ZLR-8 and its active metabolite diclofeance. Representative plasma concentration vs time profiles resulting from administration of ZLR-8 to beagle dogs are presented in this communication.  相似文献   

12.
Nitrofibriate, a new compound of hypolipidemic, is modified based on fenofibrate. Both of them are used for prevention and treatment of cardiovascular diseases. In this study, an accurate and sensitive analytical method of reversed‐phase high‐performance liquid chromatography was developed to determine fenofibric acid, which is an active metabolite of both nitrofibriate and fenofibrate in rat plasma. This method was validated and successfully applied to pharmacokinetic study of nitrofibriate and fenofibrate after oral administration. The results suggested that the pharmacokinetic behavior of nitrofibriate followed a nonlinear process, while fenofibrate was linear, demonstrating that the two drugs were different in pharmacokinetic behaviors. Moreover, the effect of fenofibrate and nitrofibriate on releasing NO in rat serum was explored. This study showed that nitrofibriate, as a nitric oxide donor, could slowly release nitric oxide in vivo. This study provided a biopharmaceutical basis for further study of nitrofibriate.  相似文献   

13.
Cinnamaldehyde (CA), an active ingredient isolated from the traditional Chinese medicine Cortex Cinnamomi, has a wide range of bioactivities. To clarify the distribution characteristics of CA, a selective and sensitive method utilizing gas chromatography–mass spetrometry was initially developed for simultaneously determining the concentration of CA and its metabolite cinnamyl alcohol in rat tissues. Selected ion masses of m/z 131, 105 and 92 were chosen, and separation of the analytes was performed on a DB‐5 ms (30 m × 0.25 mm, 0.25 µm, thickness) capillary column by gas chromatography–mass spectrometry. The calibration curves demonstrated good linearity and reproducibility over the range of 20–2000 and 20–4000 ng/mL for various tissue samples. Recoveries ranged from 86.8 to 107.5%, while intra‐ and interday relative standard deviations were all <11.3%. The analysis method was successfully applied in tissue distribution studies for CA and cinnamyl alcohol. As CA and cinnamyl alcohol may inter‐convert to one another, simultaneous determination of both analytes provides a comparative and accurate data for tissue study. The concentrations of CA and cinnamyl alcohol remaining in spleen were the highest among the main organs, including heart, liver, spleen, lung, kidney and brain. In addition, there was no long‐term accumulation of CA in rat tissues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A simple and rapid liquid chromatography–mass spectrometry (LC‐MS) method was developed and validated for analysis of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, icariin and epimedin A, B, C in rat target tissues (spinal cord, brain, muscle and sciatic nerve) after intravenous administration of Jiweiling freeze‐dried powder using genistein as an internal standard (IS). The tissue samples were treated by protein precipitation with methanol prior to HPLC and chromatographic separation was performed on a C18 column utilizing a gradient elution program with acetonitrile and 0.1% formic acid aqueous. Electrospray ionization (ESI) source was employed and the 11 analytes and IS were detected by multiple reaction monitoring (MRM) scanning under the negative ionization mode. Higher sensitivity was achieved and the optimized mass transition ion‐pairs (m/z) for quantitation were selected. The calibration curves were linear over the investigated concentration ranges with correlation coefficients higher than 0.995. The intra‐ and inter‐day RSDs were all less than 10% with the relative error (RE) within ±9.3%. The mean extraction recoveries for all compounds were between 93.3 and 106%. The proposed method was successfully applied to investigate the target tissue distribution of the 11 compounds in rat after intravenous administration of Jiweiling freeze‐dried powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Harpagoside, an iridoid glycoside, is the major bioactive constituent of the traditional Chinese medicine Scrophulariae Radix. High‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐ESI‐IT‐TOF‐MSn) was used to profile and identify the metabolites of harpagoside in rats in vivo and to study the distribution of these metabolites in rats for the first time. A total of 45 metabolites were identified, 37 of which were postulated to be new compounds. The number of detected metabolites in the heart, liver, spleen, lung, kidney, stomach and small intestine was 2, 9, 6, 16, 4, 16 and 6, respectively, which indicated that the target organs of harpagoside should be spleen, lung and stomach. The main types of metabolic reactions of harpagoside in rats are hydrolysis, reduction, sulfuric acid addition, hydroxylation, methoxylation, sulfate substitution, methylation, glucose conjugation and amino acid conjugation. Furthermore, 23 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological effects of harpagoside. Moreover, these findings provide a reference for studying the metabolism and distribution of iridoid compounds.  相似文献   

17.
Accurate, selective, sensitive and precise HPTLC‐densitometric and RP‐HPLC methods were developed and validated for determination of bumadizone calcium semi‐hydrate in the presence of its alkaline‐induced degradation product and in pharmaceutical formulation. Method A uses HPTLC‐densitometry, depending on separation and quantitation of bumadizone and its alkaline‐induced degradation product on TLC silica gel 60 F254 plates, using hexane–ethyl acetate–glacial acetic acid (8:2:0.2, v/v/v) as a mobile phase followed by densitometric measurement of the bands at 240 nm. Method B comprises RP‐HPLC separation of bumadizone and its alkaline‐induced degradation product using a mobile phase consisting of methanol–water–acetonitrile (20:30:50, v/v/v) on a Phenomenex C18 column at a flow‐rate of 2 mL/min and UV detection at 235 nm. The proposed methods were successfully applied to the analysis of bumadizone either in bulk powder or in pharmaceutical formulation without interference from other dosage form additives, and the results were statistically compared with the established method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A specific, sensitive and stable high‐performance liquid chromatography (HPLC)‐based analytical method was established to determine the level of pefloxacin mesylate (PM) in the plasma and various tissues of chickens. Chickens were randomly assigned to 12 equal experiment groups, including 11 treatment groups and one control group. The chickens in the treatment groups received oral administration of PM and were sacrificed at different pre‐determined time points, with their blood and various organs harvested, extracted and analyzed by HPLC to quantify the level of the residual antibiotic. Method validation studies indicated that the HPLC measurement showed excellent precision, reproducibility, stability and robustness. The obtained pharmacokinetic parameters suggested that PM reached peak levels in various tissues within 1–2 h after its oral administration, and was mainly concentrated in liver and kidney. The antibiotic was also found to be cleared from chicken crureus, brain, testes, ovaries and pancreas at higher rates compared with other organs. Overall, the rapid accumulation of PM could at least be partially attributed to its relatively slow organ clearance. These results could serve as a useful guidance for the rational use of PM and other quinolone‐derived antimicrobials in the treatment of infectious diseases in chickens and other animals.  相似文献   

19.
The natural product curcumin is widely used in Asian countries for the treatment of several diseases. However, the clinical potential of curcumins remains limited due to their relatively poor bioavailability and no experimental data about their lipophilicity for bioavailability prediction. To evaluate the retention and lipophilicity of curcumin and its 31 newly synthesized analogues, they were subjected to 3D quantitative structure-retention relationship studies by RP-HPLC. Superior than the classical four-variant quantitative structure-retention relationship model (conventional r(2) =0.734), the 3D comparative molecular similarity index analysis model with combined steric, electrostatic, and H-bond donor fields, resulted in a robust structure-retention correlation (cross-validated q(2) =0.613 and r(2) =0.979). The statistical analyses indicate that the electrostatic and H-bond donor fields have a primary influence on the chromatographic retention of analytes. The predictive power and robustness of the derived comparative molecular similarity index analysis model was further confirmed by the test-set validation (q(2) =0.702, r(2) =0.905, and the slope K=1.016) and Y-randomization examination. Statistically significant and physically meaningful 3D-quantitative structure-retention relationship provided better insight into understanding the retention behaviors of curcumin and its analogues, and their separation mechanism in a given RP-HPLC system.  相似文献   

20.
Interest in antimyocardial ischemic activity of a graminan‐type fructan with a weight average molecular weight of 4.8 kDa extracted from Radix Ophiopogonis (ROP) has necessitated the study of its pharmacokinetics and tissue distribution. For that, a simple HPGPC–FD method was developed for the sensitive and specific determination of FITC‐ROP (fluorescein–isothiocyanate‐labeled ROP) in plasma and rat tissues (heart, liver, spleen, lung, kidney, brain and stomach). The analyte was separated on a Shodex Sugar KS‐802 high‐performance gel column with 0.1 M phosphate buffer (pH 7.0) as mobile phase at a flow rate of 0.5 mL/min, and fluorescence detection at λex 495 nm and λem 515 nm. The calibration curve for FITC‐ROP was linear over the range 0.25–20.0 or 50.0 μg/mL in all studied biosamples with correlation coefficients >0.995. The inter‐day and intra‐day precisions of analysis were not more than 10%, and assay accuracy ranged from 93 to 105% for plasma and from 89 to 108% for tissue homogenates. This method has been confirmed here to be suitable for the study of pharmacokinetics and tissue distribution of ROP and the achieved results are highly instructive for the further pharmaceutical development of ROP, suggesting the promising application of the method to the increasingly important carbohydrate‐based drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号