首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive LC–MS/MS method for the determination of bruceine D in rat plasma was developed. The analyte and IS were separated on a Luna C18 column (2.1 × 50 mm, 1.7 μm) using a mobile phase of acetonitrile and 0.1% formic acid in water (40:60, v/v) at a flow rate of 0.25 mL/min. The selected reaction monitoring mode was chosen to monitor the precursor‐to‐product ion transitions of m/z 409.2 → 373.2 for bruceine D and m/z 469.2 → 229.3 for IS using a negative ESI mode. The method was validated over a concentration range of 0.5–2000 ng/mL for bruceine D. Total chromatography time for each run was 3.5 min. The method was successfully applied to a pharmacokinetic study of bruceine D in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid and sensitive analytical method based on liquid chromatography coupled to tandem mass spectrometry detection with positive ion electrospray ionization was developed for the determination of febuxostat in human plasma using d7‐febuxostat as the internal standard (IS). A simple protein precipitation was performed using acetonitrile. The analyte and IS were subjected to chromatographic analysis on a Capcell PAK C18 column (4.6 × 100 mm, 5 µm) using acetonitrile–5 mm ammonium acetate–formic acid (85:15:0.015, v/v/v) as the mobile phase at a flow rate of 0.6 mL/min. An Agilent 6460 electrospray tandem mass spectrometer was operated in the multiple reaction monitoring mode. The precursor‐to‐product ion transitions m/z 317 → m/z 261 (febuxsotat) and m/z 324 → m/z (261 + 262) (d7‐febuxostat, IS) were used for quantitation. The results were linear over the studied range (10.0–5000 ng/mL), and the total analysis time for each chromatograph was 3 min. The intra‐ and inter‐day precisions were less than 7.9 and 7.2%, respectively, and the accuracy was within ±4.2%. No evidence of analyte instability in human plasma was observed storage at ?20°C for 31 days. This method was successfully applied in the determination of febuxostat concentrations in plasma samples from healthy Chinese volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and selective liquid chromatography mass spectrometry method for determination of chidamide in rat plasma was developed. After addition of linezolid as internal standard, protein precipitation by acetonitrile–methanol (9:1, v/v) was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB‐C18 (2.1 × 150 mm, 5 µm) column with acetonitrile–0.1% formic acid as mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification using target fragment ions m/z 391.5 for chidamide and m/z 338.5 for the IS. Calibration plots were linear over the range of 10–2000 ng/mL for chidamide in rat plasma. The lower limit of quantification for chidamide was 10 ng/mL. The mean recovery of chidamide in plasma was in the range of 86.6–92.1%. The coefficients of variation of intra‐day and inter‐day precision were both <12%. This method is simple and sensitive and was applied successfully in a pharmacokinetic study of chidamide to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

7.
A rapid, sensitive and specific method using liquid chromatography with tandem mass spectrometric detection (LC‐MS) was developed for the analysis of sauchinone in rat plasma. Di‐O‐methyltetrahydrofuriguaiacin B was used as internal standard (IS). Analytes were extracted from rat plasma by liquid–liquid extraction using ethyl acetate. A 2.1 mm i.d. × 150 mm, 5 µm, Agilent Zorbax SB‐C18 column was used to perform the chromatographic analysis. The mobile phase was methanol–deionized water (80:20, v/v). The chromatographic run time was 7 min per injection and the flow‐rate was 0.2 mL/min. The tandem mass spectrometric detection mode was achieved with electrospray ionization interface in positive‐ion mode (ESI+). The m/z ratios [M + Na]+, m/z 379.4 for sauchinone and m/z 395.4 for IS were recorded simultaneously. Calibration curve were linear over the range of 0.01–5 µg/mL. The lowest limit of quantification was 0.01 µg/mL. The intra‐day and inter‐day precision and accuracy of the quality control samples were 2.94–9.42% and 95.79–108.05%, respectively. The matrix effect was 64.20–67.34% and the extraction recovery was 93.28–95.98%. This method was simple and sensitive enough to be used in pharmacokinetic research for determination of sauchinone in rat plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Taraxasterol, a pentacyclic triterpene from Taraxacum officinale, is one of the main active constituents of the herb. This study developed and validated a highly selective and sensitive liquid chromatography/tandem mass spectrometry for the determination of taraxasterol in rat plasma over the range of 9.0–5000 ng/mL. Chromatographic separation was achieved on a C18 (4.6 × 50 mm, 5.0 µm) column with methanol–isopropanol–water–formic acid (80:10:10:0.1, v/v/v/v) as mobile phase with an isocratic elution. The flow rate was 0.7 mL/min. After adding cucurbitacin IIa as an internal standard (IS), liquid–liquid extraction was used for sample preparation using ethyl acetate. The atmospheric pressure chemical ionization source was applied and operated in positive ion mode. Selected reaction monitoring mode was used for the quantification of transition ions m/z 409.4 → 137.1 for taraxasterol and m/z 503.4 → 113.1 for IS. The mean recoveries of taraxasterol in rat plasma ranged from 85.3 to 87.2%. The matrix effects for taraxasterol were between 98.5 and 104.0%. Intra‐ and inter‐day precision were both <11.8%, and the accuracy of the method ranged from ?7.0 to 12.9%. The method was successfully applied to a pharmacokinetic study of taraxasterol after oral administration of 7.75, 15.5 and 31.0 mg/kg in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, rapid and simple liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantitative determination of cyclobenzaprine in human plasma, to study the pharmacokinetic behavior of cyclobenzaprine capsule in healthy Chinese volunteers. With escitalopram as the internal standard (IS), sample pretreatment involved a one‐step liquid–liquid extraction using saturated sodium carbonate solution and hexane–diethyl ether (3:1, v/v). The separation was performed on an Ultimate XB‐CN column (150 × 2.1 mm, 5 µm). Isocratic elution was applied using acetonitrile–water (40:60, v/v) containing 10 m M ammonium acetate and 0.1% formic acid. The detection was carried out on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. The ion‐pairs including m/z 276.2–216.2 for cyclobenzaprine and m/z 325.2–109.1 for IS were used for monitoring. Linear calibration curves were obtained over the range of 0.049–29.81 ng/mL with the lower limit of quantification at 0.049 ng/mL. The intra‐ and inter‐day precision showed ≤6.5% relative standard deviation. The established method laid the groundwork for follow‐up studies and provided basis for the clinical administration of cyclobenzaprine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid‐phase extraction of ALO and ALO 13C‐d3 as internal standard (IS) on a LichroSep DVB‐HL (30 mg, 1 cm3) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01–10.0 ng/mL for ALO. Post‐column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion‐suppression/enhancement, expressed as IS‐normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97–103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and selective liquid chromatography mass spectrometry method for determination of curdione in rabbit plasma was developed. After addition of tramadol as internal standard (IS), protein precipitation by acetonitrile was used for sample preparation. Chromatographic separation was achieved on a Zorbax SB‐C18 (2.1 × 50 mm, 3.5 µm) column with acetonitrile–0.1% formic acid as mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive‐ion mode; selective ion monitoring was used for quantification using target fragment ions m/z 237 for curdione and m/z 264 for the IS. Calibration plots were linear over the range of 20–4000 ng/mL for curdione in plasma. The lower limit of quantification for curdione was 20 ng/mL. Mean recovery of curdione from plasma was in the range 94.3–98.4%. The RSD of intra‐day and inter‐day precision were both less than 9%. This method is simple and sensitive enough to be used in pharmacokinetic research for the determination of curdione in rabbit plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A simple LC‐MS/MS method was developed and validated for the estimation of sarpogrelate in 50 µL of rat plasma. The analyte and internal standard (IS) were extracted from rat plasma by acetonitrile precipitation and they were separated on a reversed‐phase C8 column with gradient program. The MS acquisition was performed with multiple reaction monitoring mode using m/z 430.2 to m/z 135.0 for analyte and m/z 448.2 to m/z 285.3 for IS. The calibration curves were linear over the range of 1–1000 ng/mL with the correlation coefficient greater than 0.999. With dilution integrity up to 20‐fold, the upper limit of quantification was extendable up to 15,000 ng/mL. The method was successfully applied to the analysis of rat plasma samples after single dose oral administration of sarpogrelate at 5 mg/kg to rats for the determination of its pharmacokinetics. Following oral administration the maximum mean concentration in plasma (Cmax, 11514 ng/mL) was achieved at 0.25 h (Tmax) and the area under curve (AUC0–24) was 11051 ± 3315 ng h/mL. The half‐life (t1/2) and clearance (Cl) were 2.9 ± 1.1 h and 490 ± 171 mL/h/kg, respectively. We believe that development of a method in rodent plasma would facilitate the ease of adaptability of sarpogrelate in human plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
An LC‐MS/MS method was developed for the simultaneous determination of vitexin and isovitexin in rat plasma, using puerarin as the internal standard (IS). Plasma samples extracted with protein precipitation procedure were separated on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) with a mobile phase composed of methanol and 0.1% formic acid (45:55, v/v). The detection was accomplished by multiple reaction monitoring mode in positive electrospray ionization source. The optimized mass transition ion‐pairs for quantitation were m/z 431.2 → 311.1 for vitexin and isovitexin, and m/z 415.1 → 295.1 for IS. The total run time was 7.5 min for each injection. The calibration curves were linear (r2 > 0.99) over the investigated concentration range (2.00–2000 ng/mL) and the lower limits of quantification were 2.00 ng/mL in rat plasma sample. The intra‐ and inter‐day relative standard deviations were no more than 14.9% and the relative errors were within the range of ?3.2–2.1%. The extraction recoveries for both compounds were between 89.3 and 97.3%. The robust LC‐MS/MS method was further applied in the pharmacokinetic study in Sprague–Dawley rats after oral administration of Santalum album L. leaves extract at a dose of 116 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a fast UHPLC‐MS/MS method was developed and validated for the determination of a novel potent carvone Schiff base of isoniazid (CSB‐INH) in rat plasma using carbamazepine as an internal standard (IS). After a single‐step protein precipitation by acetonitrile, CSB‐INH and IS were separated on an Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) under an isocratic mobile phase, consisting of acetonitrile: 10 mM ammonium acetate (95:5, v/v), at a flow rate of 0.3 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring mode by using positive electrospray ionization source. The precursor to product ion transitions were set at m/z 270.08 → 79.93 for CSB‐INH and m/z 237.00 → 178.97 for IS. The proposed method was validated in compliance with US Food and Drug Administration and European Medicines Agency guidelines for bioanalytical method validation. The method was found to be linear in the range of 0.35–2500 ng/mL (r2 ≥ 0.997) with a lower limit of quantification of 0.35 ng/mL. The intra‐ and inter‐day precision values were ≤12.0% whereas accuracy values ranged from 92.3 to 108.7%. In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of CSB‐INH in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号