首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereoisomers of 1,2,3,4‐tetrahydroisoquinoline amino alcohol analogues and derivatives thereof were separated in normal‐phase mode on chiral stationary phases based on preprepared silica coated with cellulose tris‐(3,5‐dimethylphenyl carbamate), cellulose tris‐(3‐chloro‐4‐methylphenyl carbamate), cellulose tris‐(4‐methylbenzoate) or cellulose tris‐(4‐chloro‐3‐methylphenyl carbamate). On all the investigated chiral columns, the retention and the enantioseparation were influenced by the nature and the concentrations of the mobile phase components and additives, and also the temperature. Experiments were performed in the temperature range 10–50°C. Thermodynamic parameters were calculated from plots of lnα vs 1/T. On these polysaccharide‐based chiral columns, both enthalpy‐driven separations and entropy‐controlled enantioseparations were observed. The latter was advantageous with regard to the shorter retention and greater selectivity at high temperature. The sequence of elution of the stereoisomers was determined in all cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This work reports a high‐performance liquid chromatography normal‐phase methodology to elucidate enantiomers of naphthalene derivatives, evaluated as melatoninergic agonists. For this purpose four different polysaccharide based chiral stationary phases were evaluated, namely Chiralcel OD‐H (cellulose tris‐3,5‐dimethylphenylcarbamate), Chiralcel OJ (cellulose tris‐methylbenzoate), Chiralpak AD (amylose tris‐3,5‐dimethylphenylcarbamate) and Chiralpak AS (amylose tris‐(S)‐1‐phenylethylcarbamate) with different alcoholic modifiers on different amounts in n‐heptane. A temperature study was carried out, between 20 and 40 °C and the apparent thermodynamic parameters were calculated thanks to the Van't Hoff linearization. For all compounds (except 3), ΔΔ and ΔΔ exhibited positive values ranging from 791.2 to 9999.3 J/mol and from 3.9 to 37.8 J/K/mol respectively, indicating entropically driven separations. Optimized conditions led to goof resolution of 2.37 for compound 1 on Chiralpak AS, with heptane–2‐propanol 90:10 (v/v), at a temperature of 30 °C. Then they were transposed to the preparative scale for compound 1, generating 22 mg of each enantiomer with an 80% yield. The limits of detection and of quantification were determined to allow the calculation of the enantiomeric excess. They were found with very low values, equal to 0.32 and 1.05 µ m and 0.33 and 1.11 µ m, respectively, for peaks 1 and 2 of compound 1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The enantiomeric pairs of cis and trans stereoisomers of cyclic β‐aminohydroxamic acids and their related cis and trans cyclic β‐amino acids containing two chiral centers were directly separated on four structurally related chiral stationary phases derived from quinine and quinidine modified with (R,R)‐ and (S,S)‐aminocyclohexanesulfonic acids. Applying these zwitterionic ion‐exchangers as chiral selectors, the effects of the composition of the bulk solvent, the acid and base additives, the structures of the analytes, and temperature on the enantioresolution were investigated. To study the effects of temperature and obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range 5–50°C. The differences in the changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°) were calculated from the linear van't Hoff plots derived from the ln α versus 1/T curves in the studied temperature range. Results thus obtained indicated enthalpy‐driven separations in all cases. The sequence of elution of the enantiomers was determined and found to be reversed when ZWIX(–)™ was changed to ZWIX(+)™ or ZWIX(–A) to ZWIX(+A).  相似文献   

4.
The application of a chiral ligand‐exchange column for the direct high‐performance liquid chromatographic enantioseparation of unusual β‐amino acids with a sodium N‐((R)‐2‐hydroxy‐1‐phenylethyl)‐N‐undecylaminoacetate‐Cu(II) complex as chiral selector is reported. The investigated amino acids were isoxazoline‐fused 2‐aminocyclopentanecarboxylic acid analogs. The chromatographic conditions were varied to achieve optimal separation. The effects of temperature were studied at constant mobile phase compositions in the temperature range 5–45°C, and thermodynamic parameters were calculated from plots of lnk or lnα versus 1/T. Δ(ΔH°) ranged from –2.3 to 2.2 kJ/mol, Δ(ΔS°) from –3.0 to 7.8 J mol?1 K?1 and –Δ(ΔG°) from 0.1 to 1.7 kJ/mol, and both enthalpy‐ and entropy‐controlled enantioseparations were observed. The latter was advantageous with regard to the shorter retention and greater selectivity at high temperature. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. The sequence of elution of the enantiomers was determined in all cases.  相似文献   

5.
Liquid chromatographic separation of stereoisomers of darunavir on Chiralpak AD‐H, a column containing the stationary phase coated with amylose tris(3,5‐dimethylphenylcarbamate) as a chiral selector, was studied under normal‐phase conditions at different temperatures between 20 and 50°C. The effect of quality and quantity of different polar organic modifiers viz: methanol, ethanol, 1‐propanol, and 2‐propanol in the mobile phase as well as column temperature on retention, separation, and resolution was investigated and optimized. The optimum separation was accomplished using a mobile phase composed of n‐hexane/ethanol/diethyl amine (80:20:0.1 v/v/v) at 40°C. Apparent thermodynamic parameters ΔH0 and ΔS* were derived from the Van't Hoff plots (lnk′ versus 1/T) and used to explain the strength of interactions between the stereoisomers and amylose tris(3,5‐dimethylphenylcarbamate) coated chiral stationary phase.  相似文献   

6.
Two new polysaccharide‐derived chiral selectors, namely, 6‐azido‐6‐deoxy‐3,5‐dimethylphenylcarbamoylated amylose and 6‐azido‐6‐deoxy‐3,5‐dimethylphenyl carbamoylated cellulose, were synthesized under homogeneous conditions and immobilized onto aminized silica gel by the Staudinger reaction, resulting in two new immobilized polysaccharide chiral stationary phases (CSPs). Their enantioseparation performances were investigated under normal‐phase mode by HPLC. Among 17 analytes, baseline separations of 12 pairs of enantiomers are achieved on the immobilized cellulose CSP, which demonstrates that this new cellulose material exhibits almost the same enantioseparation performance as the coated cellulose CSP. In addition, the amylose‐derived CSP presents limited enantiorecognition ability but certain complementarity with the immobilized and coated cellulose‐based materials. Neither metolachlor nor paclitaxel side chain acids are separated on two cellulose‐derived CSPs, but effective separations are obtained on the immobilized amylose column.  相似文献   

7.
Retention and enantioseparation behavior of ten 2,2′‐disubstituted or 2,3,2′‐trisubstituted 1,1′‐binaphthyls and 8,3′‐disubstituted 1,2′‐binaphthyls, which are used as catalysts in asymmetric synthesis, was investigated on eight chiral stationary phases (CSPs) based on β‐CD, polysaccharides (tris(3,5‐dimethylphenylcarbamate) cellulose or amylose CSPs) and new synthetic polymers (trans‐1,2‐diamino‐cyclohexane, trans‐1,2‐diphenylethylenediamine and trans‐9,10‐dihydro‐9,10‐ethanoanthracene‐(11S,12S)‐11,12‐dicarboxylic acid CSPs). Normal‐, reversed‐phase and polar‐organic separation modes were employed. The effect of the mobile phase composition was examined. The enantiomeric separation of binaphthyl derivatives, which possess quite similar structures, was possible in different enantioselective environments. The substituents and their positions on the binaphthyl skeleton affect their properties and, as a consequence, the separation system suitable for their enantioseparation. In general, the presence of ionizable groups on the binaphthyl skeleton, substitution with non‐identical groups and a chiral axis in the 1,2′ position had the greatest impact on the enantiomeric discrimination. The 8,3′‐disubstituted 1,2′‐binaphthyl derivatives were the most easily separated compounds in several separation systems. From all the chiral stationary phases tested, cellulose‐based columns were shown to be the most convenient for enantioseparation of the studied analytes. However, the polymeric CSPs with their complementary behavior provided good enantioselective environments for some derivatives that could be hardly separated in any other chromatographic system.  相似文献   

8.
An efficient, simple, validated, analytical and semi‐preparative HPLC method has been developed for direct enantioresolution of (RS)‐Ketorolac (Ket) using monochloro‐methylated derivatives of cellulose and amylose, i.e. cellulose (tris‐3‐chloro‐4‐methylphenylcarbamate) and amylose (tris‐5‐chloro‐2‐methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)‐Ket under normal and reversed‐phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n‐BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose‐based CSP using EtOH, while using 2‐PrOH (15%) and amylose‐based CSP obtained the highest retention. Under reversed‐phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)‐Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide‐based chiral columns in high‐performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.  相似文献   

10.
An LC method was developed and prevalidated for the enantiomeric purity determination of S‐amlodipine in polar organic solvent chromatography using a chlorine‐containing cellulose‐based chiral stationary phase (CSP). The concentration of formic acid (FA) (0.01–0.2%) in the mobile phase containing acetonitrile as the main solvent was found to influence the elution order of amlodipine enantiomers as well as the enantioresolution. A reversal of the enantiomer elution order of amlodipine was only observed with chiral stationary phases with both electron‐withdrawing (chloro) and electron‐donating groups (methyl) on the phenyl moieties of the chiral selector, namely cellulose tris(3‐chloro‐4‐methylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate). The highest enantioresolution (Rs: 4.1) value was obtained at the lowest FA concentration (0.01%) using cellulose tris(4‐chloro‐3‐methylphenylcarbamate) as the chiral selector and the enantiomeric impurity, R‐amlodipine, eluted first under these conditions. Therefore, the mobile phase selected for the prevalidation of the method consisted of ACN/0.1% DEA/0.01% FA and the temperature was set at 25°C. The method was prevalidated by means of the strategy based on the total measurement error and the accuracy profile. The method was found to be selective and the limit of quantification was found to be about 0.05% for R‐amlodipine, while the limit of detection was close to 0.02%.  相似文献   

11.
The classical method for the preparation of immobilized polysaccharide‐based chiral stationary phases (CSPs) with a diisocyanate was improved. Cellulose or amylose was directly coated onto 3‐aminopropyl silica gel after it was dissolved in a mixture of N,N‐dimethylacetamide, LiCl, and pyridine, then immobilized onto silica gel with a diisocyanate, and finally allowed to react with an excess of corresponding isocyanate. Four polysaccharide derivatives, 3,5‐dimethylphenylcarbamate and 3,5‐dichlorophenylcarbamate of cellulose, and 3,5‐dimethylphenylcarbamate and 5‐chloro‐2‐methylphenylcarbamate of amylose, were immobilized onto silica gel utilizing this method. Compared with the classical diisocyanate method, the improved procedure avoided the derivatization and regeneration of 6‐hydroxyl groups of cellulose and amylose, and thus showed an advantage for simple and economical preparation. The relationships among the amount of diisocyanate used, immobilization efficiency, and enantioseparation on the cellulose‐based CSPs were investigated. Also, the solvent durability of the obtained CSPs was examined with eluents containing chloroform or THF. By utilizing these eluents, the chiral recognition abilities of the obtained CSPs for some of the tested racemates were improved.  相似文献   

12.
α‐Iminopyridine (α‐IP) is an important redox‐noninnocent ligand. The substituents on the imino function of α‐IPs have important impact on the reaction selectivity with diethylzinc. For the α‐IPs with a hydrogen substituent on the imino carbon, reduction occurred for the non‐bulky N‐substituents phenyl and 2‐methylphenyl groups, whereas alkyl addition and coupling reactions can be selectively achieved for the sterically bulky N‐substituents 2,6‐dimethylphenyl or 2,4,6‐trimethylphenyl group. However, for the α‐IPs with a CH3 substituent on the imino carbon, the deprotonation reaction happened regardless of the N‐substituents of 2‐methylphenyl or 2,6‐dimethylphenyl group. All the products were isolated and characterized by single‐crystal X‐ray diffraction. The possible mechanisms of these reactions were also discussed.  相似文献   

13.
Thirteen pairs of enantiomers belonging to the same structural family (phenylthiohydantoin‐amino acids) were analyzed on two polysaccharide chiral stationary phases, namely, tris‐(3,5‐dimethylphenylcarbamate) of amylose (Chiralpak AD‐H) or cellulose (Chiralcel OD‐H) in supercritical fluid chromatography with a carbon dioxide/methanol mobile phase (90:10 v/v). Five different temperatures (5, 10, 20, 30, 40°C) were applied to evaluate the thermodynamic behavior of these enantioseparations. On the cellulose stationary phase, the retention, and separation trends were most similar among the set of probe analytes, suggesting that the chiral cavities in this stationary phase have little diversity, or that all analytes accessed the same cavities. Conversely, the retention and separation trends on the amylose phase were much more diverse, and could be related to structural differences among the set of probe analytes (carbon chain length in the amino acid residue, secondary amine in proline, existence of covalent rings, or formation of pseudo‐rings via intramolecular hydrogen bonds). The large variability of behaviors on the amylose phase suggests that the chiral‐binding sites in this chiral stationary phase have more variety than on the cellulose phase, and that the analytes did access different cavities.  相似文献   

14.
HPLC enantiomeric separations of 8 α‐amino acids were achieved using two self‐made chiral stationary phases (CSP)–phenyl isocyanate teicoplanin (Phe‐TE) and 3,5‐dimethylphenyl isocyanate teicoplanin (DMP‐TE), using reversed phase mobile phases. The Phe‐TE or the DMP‐TE CSP was prepared from the TE using derivative agents, phenyl isocyanate or 3,5‐dimethylphenyl isocyanate, respectively. The chromatographic results were given as the retention, selectivity, resolution factor and the enantioselective free energy difference corresponding to the separation of the two enantiomers. The effect of pH, organic modifier type and amount were discussed, and the stereoselectivities for two TE‐based CSPs were compared. The chiral selectivity factor for six α‐amino acids on DMP‐TE is somewhat bigger than that on Phe‐TE CSP under reversed phase (RP) mode. Comparison of the enantiomeric separations using self‐made Phe‐TE and DMP‐TE was conducted to gain a better understanding of the chiral recognition mechanism of the macrocyclic glycopeptide CSP.  相似文献   

15.
A new β‐CD derivative, heptakis [2,6‐di‐O‐pentyl‐3‐O‐(4′‐chloro‐5′‐pyridylmethyl)]‐β‐CD, was synthesized by the selective introduction of a pyridyl group on the 3‐positions of β‐CD. The chromatographic properties of the pyridyl β‐CD derivative were studied by using it as the stationary phase in capillary GC. The polarity of the prepared stationary phase was moderate, and the separation results demonstrated that the prepared stationary phase possessed excellent separation ability and chiral recognition for a wide range of analytes. Not only the aromatic positional isomers, such as o‐, m‐, p‐xylene and α‐, β‐naphthol isomers, but also some compounds with multi‐stereogenic centers, such as n‐(1‐methylpropyl)‐3‐(2,2‐dichloroethenyl)‐2,2‐dimethylcyclopropanecarboxamide and n‐(1‐methylpropyl)‐3‐(2‐chloro‐3,3,3‐trifluoropropenyl)‐2,2‐dimethylcyclopropanecarboxamide with three stereogenic centers including eight configurational isomers, were successfully separated. The results also indicated that the polarity of the β‐CD derivative, and the hydrogen bonding between the β‐CD derivative, and the analytes had a very important effect on separation.  相似文献   

16.
用大环抗生素替考拉宁手性固定相(TE CSP)分别与3,5-二甲基苯基异氰酸酯和苯基异氰酸酯反应得到了两种新型的高效液相色谱手性固定相----3,5-二甲基苯基异氰酸酯替考拉宁手性固定相(DMP-TE CSP)和苯基异氰酸酯替考拉宁手性固定相(Ph-TE CSP)。用十八个手性化合物在反相及极性流动相模式对这两种CSP的对映体分离能力进行了评价和比较。在反相流动相中,十二个化合物(包括八个氨基酸和四个非氨基酸化合物----对羟基苯甘氨酸,拉米夫定,醇酸和去甲羟安定)的对映体在这两种手性固定相上都获得了分离,大部分的溶质在DMP-TE上获得了更强的保留和稍好的手性分离效果。在极性流动相中,六个氨基醇类化合物在DMP-TE上获得了更强的保留,但它们在两种CSP上的选择因子几乎没有区别。对自制的替考拉宁衍生物手性固定相进行评价和比较,将有助于大环糖肽类抗生素手性固定相手性识别机理的研究。  相似文献   

17.
The enantio‐separations of eight 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (2‐APA NSAIDs) were established using reversed‐phase high‐performance liquid chromatography with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP‐β‐CD and column temperature on retention and enantioselective separation were investigated. With 2‐APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP‐β‐CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC‐ODS (150 × 4.6 mm i.d., 5 μm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0–5.5, 20 mM) containing 25 mM HP‐β‐CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2‐APA NSAIDs in an enantioselective skin permeation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

19.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

20.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号