首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ultrafast liquid chromatographic bioanalytical method was developed and validated for the determination of telaprevir in Wistar albino rat serum. Principles of quality by design (QbD) were implemented for enhancing the bioanalytical liquid–liquid extraction of telaprevir from rat serum. A Box–Behnken design was utilized in the studies by selecting extraction time, centrifugation speed, and vortex time as the critical method variables for evaluating their effect on the critical analytical attribute, i.e., %recovery of telaprevir. Chromatographic separation was achieved within a run time of 10?min using a C-18 column and mobile phase comprising of methanol:borate buffer of pH 9 (90:10 v/v) flowing at 1.2?mL/min. Photodiode array detection was performed at 270?nm. Results of validation studies were satisfactory. The method was linear over a concentration of 25–10,000?ng/mL. Limit of detection for the developed method was 10?ng/mL. Further, design of experiments (DoE) used for inter-day accuracy and precision study suggested superior method reliability. This integrated QbD- and DoE-based approach ensured the development of a validated and reliable analytical method for optimum bioanalysis of telaprevir in biological matrix.  相似文献   

2.
In the present work, we investigated the development of a bioanalytical HPLC method of rosuvastatin (RSV) calcium as per the Quality by Design (QbD)-based systematic chemometric tools. At first, the method objectives were framed and critical analytical attributes (CAAs) were chosen. Risk assessment and factor screening was performed using Hybrid Risk Matrix and Plackett–Burman design for identifying vital factors influencing the critical method parameters (CMPs). Monte-Carlo simulation analysis was conducted which confirmed excellent process robustness (Ppk >1.33) for the studied ranges of CMPs. Furthermore, systematic method development was carried out using custom experimental design, where mobile phase ratio, pH, and injection volume were taken as CMPs at three levels. The obtained trials were evaluated for peak area, retention time, theoretical plates, and peak tailing as CAAs. Mathematical response surface modeling was carried out and optimal chromatographic solution was identified using response optimizer plots. Method transfer was made to bioanalytical scale for estimation of the analyte in rat plasma samples. Extensive method validation was performed as per the ICH Q2 guideline, which indicated validation parameters within the acceptable limits. Overall, the studies construed successful development of QbD compliant HPLC method of rosuvastatin with potential utility bioanalytical testing.  相似文献   

3.
The present studies describe quality by design-based development of bioanalytical ultra performance liquid chromatography method of olmesartan medoxomil. Initially, method objectives were defined and critical analytical attributes (CAAs) earmarked. Method optimization was conducted using a central composite design for optimizing mobile phase ratio and injection volume as the critical method parameters (CMPs) identified from risk assessment and factor screening studies, and evaluated for their influence on peak area, theoretical plates, and asymmetry factor as CAAs. Chromatographic separation was achieved using acetonitrile:water solvent system containing 0.1% orthophosphoric acid (54:46, v/v) as the mobile phase with UV detection at 243 nm. Further optimization of bioanalytical extraction process was accomplished using a Box–Behnken design selecting extraction time, centrifugation speed, and centrifugation time as the CMPs identified from failure mode and effect analysis, and evaluated for percent recovery, peak asymmetry, and theoretical plate count as the CAAs. Establishment of calibration curve indicated linearity between concentration range of 100 and 800 ng mL?1, excellent accuracy and precision with limit of detection and limit of quantification as 6.2 and 19.0 ng mL?1, respectively. Drug stability studies indicated mean percent recovery ranging between 92.4 and 97.3% under various stress conditions.  相似文献   

4.
An ultrafast liquid chromatographic bioanalytical method was developed and validated for the determination of vilazodone in Wistar rat serum. Principles of quality by design were implemented for enhancing the bioanalytical liquid–liquid extraction of vilazodone from rat serum. A Box–Behnken design was utilized in the studies by selecting extraction time, centrifugation speed, and vortex time as the critical method variables for evaluating their effect on the analytical attribute, i.e., %recovery of vilazodone. Chromatographic separation was achieved within a run time of 10?min using a C-18 column and mobile phase comprising of methanol:phosphate buffer of pH 7 (85:15 v/v) flowing at 1.5?mL/min. Photodiode array detection was performed at 242?nm. Results of validation studies were satisfactory. The method was linear over a concentration of 100–2,000?ng/mL with acceptable accuracy and precision. Limits of detection and quantitation for the developed method were 50 and 100?ng/mL, respectively. This QbD-based approach was found suitable for routine bioanalysis of vilazodone in the biological matrix.  相似文献   

5.

The current research endeavours quality-by-design (QbD)-aided chromatographic techniques for the quantification of gliclazide (GLZ) in bulk and pharmaceutical dosage forms. Analytical QbD was initiated by assigning both an analytical target profile (ATP) and critical analytical attributes (CAAs). Furthermore, risk evaluation studies, along with factor screening studies, helped identify critical method parameters (CMPs). Optimisation was carried out using a 32 full factorial design by utilising the identified CMP, that is, flow rate (X1) and pH of buffer (X2) at three different levels along with evaluation of the selected CAA, that is, the retention time (Y1) and the peak area (Y2). In addition, the influence of sole and interactive CMPs on CAAs was checked using the data obtained statistically and with response surface plots. The confirmation of significance (P?<?0.05) of the method parameters was determined using analysis of variance (ANOVA). Chromatographic separation was achieved using a stainless-steel C8 column (25 cm?×?4 mm) in isocratic elution mode using phosphate buffer (pH 3.4) and HPLC-grade acetonitrile (50:50 v/v) as the eluent. The flow rate was adjusted to 1 mL min?1 and the eluent was detected at 230 nm. The validated method, alongside subsequent stress degradation studies conducted according to the ICH guidelines, further favours it as a highly efficient method for the analysis of regular drugs as well as their degraded products. The method proposed above provided a successful demonstration of the QbD-based approach in developing an extremely sensitive and dependable technique for estimating the GLZ for routine analysis and pre-clinical applications.

  相似文献   

6.
A sensitive, specific and accurate HPLC method for the quantification of rivastigmine (RSM) in rat urine was developed and validated. The method involves the simple liquid–liquid extraction of RSM and pyridostigmine as an internal standard (IS) from rat urine with tertiary methyl butyl ether. The chromatographic separation of RSM and IS was achieved with 20 mm ammonium acetate buffer (pH 6.5) and acetonitrile (65:35, v/v) delivered at flow‐rate of 1 mL/min on a Kromasil KR‐100. The method was in linear range from 50 to 5000 ng/mL. The validation was done as per FDA guidelines and the results met the acceptance criteria. The method was successfully applied for the quantification of RSM in rat urine. Besides method validation, we have identified two metabolites of RSM in urine. Both the metabolites were characterized by HPLC‐PDA and LC‐MS/MS and it was found that one metabolite is novel. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
JCC76 is a novel nimesulide analog that selectively inhibits the human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer cell proliferation and tumor progression. To support further pharmacological and toxicological studies of JCC76, a novel and rapid method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) has been developed and validated for the quantification of the compound in rat plasma. A C18 column was used for chromatographic separation, and the mobile phase was aqueous ammonium formate (pH 3.7; 5 mm )–methanol (1:9, v/v) with an isocratic elution. With a simple liquid–liquid extraction procedure using the mixture of methyl tert‐butyl ether–hexane (1:2, v/v), the mean extraction efficiency of JCC76 in rat plasma was determined as 89.5–97.3% and no obvious matrix effect was observed. This method demonstrated a linear calibration range from 0.3 to 100 ng/mL for JCC76 in rat plasma and a small volume of sample consumption. The intra‐ and inter‐assay accuracy and precision were within ±10%. The pharmacokinetics of JCC76 was also profiled using this validated method in rats. In conclusion, this rapid and sensitive method has been proven to effectively quantify JCC76 for pharmacokinetics study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and highly sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) bioanalytical method was developed and fully validated for the first time for the simultaneous determination of newly discovered antiviral drugs, namely sofosbuvir (SOF) and daclatasvir (DAC) in human plasma. Tadalafil (TAD) was used as internal standard (IS). SOF, DAC and TAD (IS) were extracted from plasma using liquid–liquid extraction technique with methyl tert‐butyl ether. The chromatographic separation was carried out using ZorbaxSB‐C18 column (4.6 × 50 mm,5 μm) and 5 mm ammonium formate buffer (pH 3.5)–acetonitrile (50:50, v/v) as mobile phase in an isocratic elution mode pumped at a flow rate 0.7 mL min−1. The quantitation was performed on API4500 triple quadrupole tandem mass spectrometer with positive electrospray ionization interface in multiple reaction monitoring mode. Validation was applied according to US Food and Drug Administration guidelines for bio‐analytical methodswith respect to linearity, precision, accuracy, selectivity, carry‐over, stability and dilution integrity. Linearity was obtained over concentration ranges of 0.3–3000 and 3–3000 ng mL−1 for SOF and DAC, respectively, by applying a weighted least‐squares linear regression method (1/x2). The proposed method could be applied successfully in bioequivalence and/or clinical studies for therapeutic drug monitoring of patients undergoing dual combination therapy as the latter combination proved more efficacious and powerful tool for the complete treatment of hepatitis C genotype 3 within 16 weeks. The suggested method has been applied successfully to pharmacokinetic studies with excellent assay ruggedness and reproducibility.  相似文献   

9.
This paper describes a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry assay for the determination of aliskiren in human plasma using nevirapine as an internal standard. Analyte and the internal standard were extracted from 100 μL of human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a C18 column using a mixture of acetonitrile and 0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.9 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.10–1013 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. A run time of 2.2 min for each sample made it possible to analyze a greater number of samples in a short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Pathak SM  Kumar AR  Musmade P  Udupa N 《Talanta》2008,76(2):338-346
A sensitive high performance liquid chromatographic (HPLC) method involving fluorescence detection was developed for the determination of fexofenadine (FEX), known to have low oral bioavailability, in rat plasma. In order to understand the effect of various chromatographic factors on the separation of analytes and to simultaneously optimize the resolution and analysis run time, a response surface method was used. The chromatographic separation was achieved using a Supelco C(18)-DB (250 mm x 4.6mm I.D./5 microm particle size) column with mobile phase comprising of ammonium acetate buffer and acetonitrile (63:37, v/v), delivered isocratically at a flow rate of 1.0 mL min(-1). Diphenhydramine was used as an internal standard (I.S.). The statistical evaluation of the method was examined and the method was found to be precise and accurate with a linearity range of 1-500 ng mL(-1) (r>0.9980). The intra- and inter-day precision studies showed good reproducibility with coefficients of variation (C.V.) less than 12.26%. The advantages of our method are small sample volume (100 microL), short time of analysis (13 min) and a simple sample extraction and clean-up as compared to the previously published methods. The established method provides a reliable bioanalytical methodology to carry out FEX pharmacokinetics in rat plasma.  相似文献   

11.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and reliable bioanalytical method was established for quantitati\ve and pharmacokinetic investigation of nine ginsenosides and seven bufadienolides in rat plasma after the oral administration of Shexiang Baoxin Pill by liquid chromatography–electrospray ionization tandem mass spectrometry, using tinidazole and digoxin as internal standards (ISTDs). All of the analytes and ISTDs obtained satisfactory recoveries by solid‐phase extraction using an Oasis HLB μElution Plate, which was eluted with methanol and ethyl acetate successively, and chromatographic separation was achieved on a Shim‐pack XR‐ODSIIcolumn (75 × 2.0 mm, 2.2 μm) with gradient elution using a mixture of acetonitrile–0.1% formic acid solution (v /v) as the mobile phase at a flow rate of 0.3 mL/min. Detection was carried out by a triple‐quadrupole tandem mass spectrometry with positive/negative ion switching multiple reaction monitoring mode. All analytes showed good linearity over a wide concentration range (r 2 > 0.99). The lower limit of quantification was in the range 0.625–12.5 ng/mL for bufadienolides and 2–5.5 ng/mL for ginsenosides, and the mean recoveries of all analytes were in the range 78.29–99.35%. The intra‐ and inter‐day precisions (RSD) were in the range 0.08–12.38% with the accuracies between 86.09 and 99.40%. The validated method was then successfully applied to pharmacokinetic study of the above 16 compounds in rat plasma. Pharmacokinetic results indicated that the developed extraction and analytical method could be employed as a rapid, effective technique for pharmacokinetic study of multiple components, especially various polarity that are difficult to extract simultaneously.  相似文献   

13.
A newly developed LC—APCI mass spectrometric method is described for human plasma determination of atovaquone using lapachol internal standard. A single‐step protein precipitation technique for plasma extraction of atovaquone achieving mean recovery of 94.17% (CV 8%) without compromising sensitivity (limit of quantitation 50.3 ng/mL) or linearity (50.3 ng/mL—23924.6 ng/mL) is delineated in this paper. Heated nebulizer in negative multiple reaction monitoring mode was employed with transitions m/z 365.2 → m/z 337.1 and m/z 240.9 → m/z 185.7 for atovaquone and lapachol respectively in this liquid chromatographic–tandem mass spectrometric method. Excellent chromatographic separation on a Synergi 4 μ Polar‐RP 80A (150 × 2.0 mm) column, using 100 μL of plasma extraction volume along with 10 μL of injection load, completing analysis run‐time within 2.5 min, highlights this simple yet unique bioanalytical method. The developed method can be successfully applied to pharmacokinetic studies on atovaquone suspension administered in healthy volunteers or HIV‐infected patients. Moreover full method validation results not published before are presented and discussed in detail for the first time in this article. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid–liquid extraction with n-hexane–ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18, 150 mm × 2.0 mm, 5 μm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10–10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 μL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients.  相似文献   

15.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Levo ‐tetrahydropalmatine (l‐ THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l‐ THP and its desmethyl metabolites l‐ corydalmine (l‐ CD) and l‐ corypalmine (l‐ CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid–liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed‐phase Symmetry® C18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile–methanol–10 mm ammonium phosphate (pH 3) (10:30:60, v /v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1–10,000 ng/mL. The intra‐ and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l‐ THP in rats. Taken together, the developed method can be applied for bioanalysis of l‐ THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples.  相似文献   

18.
A simple and rapid high-performance liquid chromatographic method was developed and validated for the analysis in rat plasma of BOL-303225-A, a new coumarin-based anti-inflammatory drug. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a C(18) column using acetonitrile and water containing 1% triethylamine pH 3.5, adjusted with orthophosphoric acid (35.5:64.5 v/v) as mobile phase. The UV detector was set at 324 nm. The method proved to be linear (r(2) > 0.99) and precise (RSD < 7%) over the concentration range 29-940 ng/mL, and was suitable for the support of pharmacokinetic studies in rats.  相似文献   

19.
A simple and specific bioanalytical method based on reversed‐phase high‐performance liquid chromatography (RP‐HPLC) coupled with ultraviolet detection was developed and validated for the determination of a novel valproic acid arylamide, N‐(2‐hydroxyphenyl)‐2‐propylpentanamide (HO‐AAVPA) in rat hepatic microsomes (a subcellular fraction containing phase I enzymes, especially cytochrome P450). The chromatographic separation was achieved using a reversed‐phase Zorbax SB‐C18 column and a mobile phase of acetic acid in water (0.2% v/v) and acetonitrile (40:60 v/v) with a flow rate of 0.5 mL/min. The calibration curve was linear over the range of 882–7060 ng/mL (r2 = 0.9987), and the lower limit of quantification and the lower limit of determination were found to be 882 and 127.99 ng/mL, respectively. The method was validated with excellent sensitivity, and intra‐day accuracy and precision varied from 93.79 to 93.12%, and from 2.12 to 4.36%, respectively. The inter‐day accuracy and precision ranged from 93.29 to 97.30% and from 0.68 to 3.60%, respectively. The recovery of HO‐AAVPA was measured between 91.36 and 97.98%. The assay was successfully applied to the analysis of kinetic metabolism and pharmacokinetic parameters in vitro by a substrate depletion approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid and sensitive reversed‐phase high‐performance liquid chromatographic (RP‐HPLC) method was developed to investigate pharmacokinetics of columbianadin, one of the main bioactive constituents in the roots of Angelica pubescens f. biserrata, in rat plasma after intravenous administration to rats at two doses of 10 and 20 mg/kg. The method involves a plasma clean‐up step using liquid–liquid extraction by diethyl ether, followed by RP‐HPLC separation and detection. Separation of columbianadin was performed on an analytical Diamonsil? ODS C18 column, with a mobile phase of MeOH–H2O (85 : 15, v/v) at a flow‐rate of 1.0 mL/min, and UV detection was set at 325 nm. The retention time of columbianadin and scoparone (internal standard) was 6.7 and 3.5 min, respectively. The calibration curve was linear over the range of 0.2–20.0 μg/mL (r2 = 0.9986) in rat plasma. The lower limits of detection and quantification were 0.05 and 0.1 μg/mL, respectively. The extraction recovery from plasma was in the range of 81.61–89.93%. The intra‐ and inter‐day precisions (relative standard deviation) were between 1.01 and 9.33%, with accuracies ranging from 89.76 to 109.22%. The results indicated that the method established was suitable for the determination and pharmacokinetic study of columbianadin in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号