首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
MS/MS experiment and accurate mass measurement are powerful tools in metabolite identification. However, sometimes these data do not provide enough information to assign an unambiguous structure to a metabolite. In combination with MS techniques, hydrogen/deuterium (H/D) exchange can provide additional information for structural elucidation by determination of the number of exchangeable hydrogen atoms in a structure. In this study, the principal phase I metabolites of iso‐phenylcyclopentylamine in rat bile were identified by high‐performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS). Since N‐oxidation may occur because of the existence of the primary amino group in the structure, it was difficult to differentiate the hydroxylated metabolites from N‐oxides by ESI‐Q‐TOF‐MS alone. Therefore, online H/D exchange technique was applied to solve this problem. Finally, 25 phase I metabolites were detected and structurally described, in which 11 were confirmed to be N‐oxides. This study demonstrated the effectiveness of high‐resolution mass spectrometry in combination with an online H/D exchange technique in rapid identification of drug metabolites, especially in discriminating hydroxylated metabolites from N‐oxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Schisandra chinensis Baill grows wild in Russia, China, Korea and Japan, and its fruit has been found to be effective in amnesia and insomnia. It is enriched in schisandra lignans (SL) that are major components responsible for therapeutic action. However, there are no reports on the biotransformation analysis of SL. An ultra‐performance liquid chromatography/electrospray‐ionization high‐definition mass spectrometry (UPLC‐Q‐TOF‐HDMS) method was developed to investigate the metabolism of SL in vivo. MS was performed on a Waters Micromass high‐definition system with an electrospray ionization source in positive ion mode and automated MetaboLynx software analysis with excellent MS accuracy and enhanced MS data acquisition. An improved mass defect filter (MDF) method employing both drug and core structure filter templates was applied to the processing of UPLC‐Q‐TOF‐HDMS data for the detection and structural characterization of metabolites. In this study, 30 metabolites were detected and identified in vivo, and demethylation and hydroxylation were confirmed as the primacy metabolic pathway for SL in rat plasma. In conclusion, the presently developed methodology was suitable for biotransformation research of SL and will find wide use in metabolic studies for other herbal medicines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Helicid is an active natural aromatic phenolic glycoside ingredient originating from a well‐known traditional Chinese herbal medicine and has the significant effects of sedative hypnosis, anti‐inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter and dynamic background subtraction in ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF‐MS). Moreover, we used a novel data processing method, ‘key product ions’, to rapidly detect and identify metabolites as an assistant tool. MetabolitePilot™ 2.0 software and PeakView™ 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and five phase II metabolites) were detected by comparison with the blank samples. The biotransformation route of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation, glucuronide conjugation and methylation. This is the first study simultaneously detecting and identifying Helicid metabolism in rats employing UHPLC‐Q‐TOF‐MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo.  相似文献   

6.
Gigantol is a typical bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China for the treatment of diabetic cataract, cancer and arteriosclerosis obliterans and as a tonic for stomach nourishment, saliva secretion promotion and fever reduction. However, few studies have been carried out on its in vivo metabolism. In the present study, a rapid and sensitive method based on ultra‐performance liquid chromatography/electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q/TOF‐MS) in positive ion mode was developed and applied to identify the metabolites of gigantol in rat urine after a single oral dose (100 mg/kg). Chromatographic separation was performed on an Acquity UPLC HSS T3 column (100 × 2.1 mm i. d., 1.8 µm) using acetonitrile and 0.1% aqueous formic acid as mobile phases. A total of 11 metabolites were detected and identified as all phase II metabolites. The structures of the metabolites were identified based on the characteristics of their MS, MS2 data and chromatographic retention times. The results showed that glucuronidation is the principal metabolic pathway of gigantol in rats. The newly identified metabolites are useful to understand the mechanism of elimination of gigantol and, in turn, its effectiveness and toxicity. As far as we know, this is the first attempt to investigate the metabolic fate of gigantol in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

8.
Parishin is a dominant active ingredient originating from Gastrodia elata Blume, and has good neuroprotective effects against brain disorders. In the present study, the metabolic profile of parishin by in vitro and in vivo experiments was investigated using ultra‐high performance liquid chromatography coupled with quadrupole–time of flight mass spectrometry (UHPLC/Q‐TOF MS) combined with an automated MSE technique. By comparison with reference compounds, accurate mass measurement, the characteristic fragmentation patterns of the parent drug parishin and gastrodin and relevant bio‐transformation knowledge, 14 metabolites (seven hydrolyzates and seven derivatives of gastrodin) were detected and identified in rat plasma and urine after intragastric administration of parishin, including processes of hydrolyzation, oxidation, sulfation and glucuronidation. According to the proposed metabolic pathways of parishin, in vitro hydrolytic experiments and metabolic study of gastrodin in rat plasma, it can be inferred that parishin mainly functions as a prodrug and undergoes hydrolysis before being absorbed into the blood. The hydrolyzate, mainly gastrodin, was involved in further metabolism, which was responsible for pharmacological activities of parishin. In conclusion, this work provides valuable information on parishin metabolism using a rapid and reliable UHPLC/Q‐TOF MS method, which could be widely used for the metabolic investigation of natural product. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air‐dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) method. Bile, urine and feces were collected from rats after single‐dose (10 mg/kg) orally administered phillyrin. Liquid–liquid extraction and ultrasonic extraction were used to prepare samples. UPLC‐Q‐TOF‐MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Yupingfeng granules (YPFG) were isolated from a traditional Chinese medicine (TCM) formulation composed of three herbs (Astragali Radix, Atractylodis Macrocephalae Rhizoma, and Saposhnikoviae Radix). This formulation is used in TCM to tonify qi, and it can help strengthen exterior and reduce sweating. Nevertheless, the active components of YPFG remain unclear. In this study, the chemical constituents of YPFG were systematically characterized by ultra‐performance liquid chromatography coupled with electrospray ionization/ quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS). Fifty‐eight compounds, namely, 20 flavonoids, 19 saponins, nine organic acids, four volatile coumarins, three lactones, one alkaloid, and two other components, were identified. In addition, the constituents of YPFG with the potential for in vivo bioactivities following oral administration were investigated in Sprague–Dawley rats. Thirteen compounds, namely, 11 flavonoid‐related and 2 saponin‐related components, were detected in rat plasma. After enriching flavonoids and saponins in YPFG by extraction, the extracts and YPFG were administrated to immunosuppressed rats, respectively. Plasma samples were analyzed by UPLC‐ESI‐Q‐TOF‐MS, and principal component analysis (PCA) confirmed that the extracts had similar effects to YPFG. This method could discover active ingredients in YPFG quickly and provide a scientific basis for quality control and mechanism research.  相似文献   

12.
The calyces of Physalis alkekengi var. franchetii (Chinese Lantern, JDL) are well‐known as traditional Chinese medicine owing to its various therapeutic effects. However, the bioactive constituents responsible for the pharmacological effects of JDL and their metabolites in vivo are still unclear to date. In this paper, an ultra‐high‐pressure liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (UHPLC/Q‐TOF‐MS/MS) method was established to identify absorbed constituents and in vivo metabolites in rat biological fluids after oral administration of JDL. Based on the proposed strategy, 33 compounds were observed in dosed rat biosamples. Twelve of 33 compounds were indicated as prototype components of JDL, and 21 compounds were predicted to be metabolites of JDL. Finally, the metabolic pathways were proposed, which were glucuronidation, sulfation, methylation and dehydroxylation for flavonoid constituents and sulfonation and hydroxylation for physalin consitituents. This is the first systematic study on the absorbed constituents and metabolic profiling of JDL and will provide a useful template for screening and characterizing the ingredients and metabolites of traditional Chinese medicine.  相似文献   

13.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
2,3,5,4′‐Tetrahydroxystilbene‐2‐O‐β‐D‐glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti‐inflammatory and hepatoprotective activities. Ultra‐performance LC‐quadrupole TOF‐MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MSn methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC‐MSn. The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra‐performance LC‐MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long‐term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.  相似文献   

15.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Root cortex of Paeonia suffruticosa Andrews (Paeoniaceae), known as Moutan Cortex (MC), is known to have anti‐allergic and anti‐inflammatory properties. However, the constituents absorbed into blood after oral administration of MC remain unknown. A sensitive and rapid method by ultra‐high‐pressure liquid chromatography–electrospray ionization–quadrupole‐time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS) technology and the MetaboLynxTM software combined with multiple data processing approach (Mdpa) was established to investigate the absorbed constituents in rats after oral administration of MC, providing unique high‐throughput capabilities for drug metabolism study. A hyphenated electrospray ionization and quadrupole‐time‐of‐flight analyzer was used for the determination of accurate mass of the fragment ion in negative mode, with excellent MS mass accuracy and enhanced data acquisition. This rapid automated analysis method was successfully applied for screening and identification of the constituents absorbed and metabolized studies of MC after oral administration to rats. A total of 46 peaks were obtained from MC, 41 of which were tentatively characterized. In the VIP‐plot of orthogonal partial least‐squares discriminant analysis, 23 interesting ions in serum samples were extracted, and 16 parent components and seven metabolites were detected in vivo. The integrative serum pharmacochemistry technique, UPLC‐ESI‐Q‐TOF‐MS, and Mdpa method were successfully applied for rapid discovery of multiple components from MC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
8‐Prenylkaempferol is a prenylflavonoid that has various bioactivities and benefits for human health. A high‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐DAD‐ESI‐IT‐TOF‐MSn) method was established to profile and identify the metabolites of 8‐prenylkaempferol in rat in vivo and in vitro, and to study the distribution of these metabolites in rats for the first time. A total of 38 metabolites were detected and tentatively identified, 30 of which were identified as new compounds. The new in vivo metabolic reactions in rats of prenylflavonoids of isomerization, polymerization, sulfation, amino acid conjugation, vitamin C conjugation and other known metabolic reactions were found in the metabolism of 8‐prenylkaempferol. The numbers of detected metabolites in feces, urine, plasma, small intestine, stomach, kidneys, liver, heart, lungs, spleen and hepatic S9 fraction were 31, 19, 1, 20, 13, 8, 7, 3, 3, 1 and 11, respectively. This indicated that small intestine and stomach were the major organs in which the 8‐prenylkaempferol metabolites were distributed. Furthermore, 16 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological actions of 8‐prenylkaempferol. Moreover, they provide a reference for the study of the metabolism and distribution of prenylflavonoid aglycone compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UPLC/Q‐TOF‐MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q‐TOF‐MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra‐high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid–liquid extraction and separated on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone‐related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid‐related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid‐related metabolites. It is concluded the developed UHPLC‐Q‐TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号