首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clinical formulation of primaquine (PQ) is a mixture of (−)‐(R)‐ and (+)‐(S)‐ primaquine enantiomers which may show different pharmacokinetic and pharmacodynamic properties. To assess the efficacy and toxicity of primaquine enantiomers, a method using LC‐MSD‐TOF has been developed. The enantiomers were well separated using a Chiralcel OD column (250 × 4.6 mm, 10 µm) with a linear gradient of mobile phase consisting of acetonitrile (0.1% formic acid) and aqueous ammonium formate (20 mm ; 0.1% formic acid) adjusted to pH 5.9 at a flow rate of 0.7 mL/min. The method was validated for linearity, precision, accuracy and limits of detection and quantification. The calibration curves were linear with all correlation coefficients being >0.999. The average recoveries of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 88 and 92%, respectively, in spiked human plasma and 89 and 93% respectively in spiked mouse plasma samples. The RSD of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 2.15, 1.74, 1.73 and 2.31, respectively, in spiked human plasma and 2.21, 1.09, 1.95 and 1.17% in spiked mouse plasma, respectively. The intra‐day and inter‐day precisions expressed as RSD were lower than 10% in all analyzed quality control levels. The method as reported is suitable for study of the pharmacokinetic and pharmacodynamic properties of the enantiomers of primaquine. The method was successfully applied to study plasma pharmacokinetic profile of enantiomers of primaquine and carboxyprimaquine in mice administered with primaquine in racemic form. The analytical method was found to be linear, accurate, precise and specific. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
All solid‐state enantioselective electrode (ASESE) based on a newly synthesized chiral crown ether derivative ((R)‐(?)‐(3,3′‐diphenyl‐1,1′‐binaphthyl)‐23‐crown‐6 incorporating 1,4‐dimethoxybenzene) was prepared and characterized by potentiometry. The ASESE clearly showed enantiomer discrimination for methyl esters of alanine, leucine, valine, phenylalanine, and phenylglycine, where the enantioselectivity for phenylglycine methyl ester was the highest (KR,S=8.5±7.1%). Experimental parameters of ASESE for the analysis of (R)‐(?)‐phenylglycine methyl ester were optimized. The optimized ASESE showed a slope of 55.3±0.2 mV/dec for (R)‐(?)‐phenylglycine methyl ester in the concentration range of 1.0×10?5–1.0×10?2 M and the detection limit was 9.0×10?6 M. The ASESE showed good selectivity for (R)‐(?)‐phenylglycine methyl ester against inorganic cations and various amino acid methyl esters. The concentration of (R)‐(?)‐phenylglycine methyl ester was determined in the mixture of (R)‐(?) and (S)‐(+)‐phenylglycine methyl ester, which ratios varied from 2 : 1 to 1 : 9. The lifespan of the electrode was alleged to be 30 days.  相似文献   

4.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

5.
(+)-(1S, 3S, 6S, 8S)-and (?)-(1R, 3R, 6R, 8R)-4, 9-Twistadiene: Synthesis and Absolute Configuration A synthesis and the determination of the absolute configuration of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-4, 9-twistadiene ((+)- and (?)- 4 , respectively) is described. Their chiroptical properties are compared with those of saturated twistane ((+)- and (?)- 5 ) as well as with those of the unsaturated and saturated 2, 7-dioxatwistane analogs (+)- and (?)- 9 , and (+)- and (?)- 10 , respectively, which also are compounds of known absolute configurations.  相似文献   

6.
Novel Synthesis of (?)-(R)-Cembrene A, Synthesis of (+)-(R)-Cembrenene and (+)-(S)-Cembrene A novel synthesis of (?)-(R)-cembrene A ((?)- 3 ) was developed using the Sharpless epoxidation for the introduction of the chiral center. Furthermore, the synthesis of (+)-(R)-cembrenene ((+)- 4 ) showed that this cembranoid must have the (R)-configuration and not, as previously reported, the (S)-configuration. Selective hydrogenation of (+)- 4 afforded (+)-(S)-cenibrene ((+)- 5 ).  相似文献   

7.
(+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene. A synthesis and the determination of the sense of chirality of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-2,7-dioxa-twista-4,9-diene ((+)- 5 and (?)- 5 , respectively) is described.  相似文献   

8.
Enantiospecific Synthesis of (+)-(2R)- and (?)-(2S)-6-Ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic Acid The two enantiomers (?)-(2S)- and (+)-(2R)-6-ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic acid ((S)- and (R)- 7 ) have been synthesized from (+)-(3S) and (?)-(3R)-3-hydroxybutanoates, respectively (Scheme 1). By reduction and decarboxylation, the tetrahydro-2H-pyranols (2R, 4R, 6S)- and (2S, 4S, 6R)- 13 , respectively, were obtained with an enantiomeric excess of ≥ 93%.  相似文献   

9.
A highly enantiospecific, azide‐free synthesis of (?)‐(R)‐ and (+)‐(S)‐piperidin‐3‐ol in excellent yield was developed. The key step of the synthesis involves the enantiospecific ring openings of enantiomerically pure (R)‐ and (S)‐2‐(oxiran‐2‐ylmethyl)‐1H‐isoindole‐1,3(2H)‐diones with the diethyl malonate anion and subsequent decarboxylation.  相似文献   

10.
A facile synthetic route to prepare the dual‐functional molecule, 2,5‐bis(4′‐carboxyphenyl)styrene, was developed. The esterification of this compound with chiral alcohols, that is, (S)‐(+)‐sec‐butanol/(R)‐(?)‐sec‐butanol, (S)‐(+)‐sec‐octanol/(R)‐(?)‐sec‐octanol, and D ‐(+)‐menthol/L ‐(?)‐menthol, respectively, yielded three enantiomeric pairs of novel vinyl monomers, which underwent radical polymerization to obtain helical polymers with an excess screw sense. These polymers exhibited optical rotations as large as fourfold those of the corresponding monomers. Their helical conformations were quite stable as revealed by the almost unchanged chiroptical properties measured at different temperatures. The polymers with linear alkyl tails in the side‐groups formed irreversibly columnar nematic phases in melt although the corresponding monomers were not liquid crystalline. Whereas, the polymers with cyclic tails generated no mesophase. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2408–2421, 2009  相似文献   

11.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

12.
1,3‐Dipolar cycloadditions of the bicyclic monoterpenes (S)‐(?)‐camphene ( 1 ), (R)‐(+)‐a‐pinene ( 2 ), and (S)‐(?)‐b‐pinene ( 3 ) with aryl and heteroaryl nitrile oxides afforded new spirocyclic and tricyclic isoxazoline derivatives 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 whose biological activities were evaluated in bioassay studies.  相似文献   

13.
The total synthesis of (?)‐pinellic acid with (9S,12S,13S)‐configuration and its (9R,12S,13S)‐diastereoisomer was achieved in high overall yields from a common intermediate derived from (+)‐L ‐diethyl tartrate.  相似文献   

14.
Following a known procedure, a mixture of (?)-(2S,3R)- and (+)-(2R,3R)-2,3-epoxy-citronellols ( 5 ) was prepared from (?)-(R)-linalool ( 3 ) via epoxy alcohol 4 and then reduced to (?)-(R)-3-hydroxy-citronellol ( 6 ). Sensitized photooxygenation of (?)-(R)-diol 6 led in part to (?)-(R)-triol 8 which was cyclodehydrated by dilute acid to a mixture of diastereoisomeric tetrahydropyran-4-ols 9 and 10 . Dehydration of hydroxy ethers 9 and 10 afforded (?)-(S)-nerol oxide ( 11 ) and (+)-(R)-nerol oxide ( 12 ), respectively, with an optical purity of 91%. Nerol oxide isolated from Bulgarian rose oil (0.038%) proved to be racemic. These results shed some light on the formation of nerol oxide in plants.  相似文献   

15.
Synthesis of (?)-(6R)- and (+)-(6S)-Tetrahydro-6-[(Z)-pent-2-enyl]-2H-Pyran-2-one, lactones from Jasminum grandiflorum L. and from Polianthes tuberosa L. (?)-(2S)-Ethyl 2-hydroxyhexanedioate ((2S)- 2 ) was obtained by kinetic resolution of racemic ethyl 2-hydroxy-hexanedioate with baker's yeast. The key intermediates (+)-(5R)- and (?)-(5S)-ethyl 5,6-epoxyhexanoate ((5R)- and (5S)- 6 , resp.) are proved to be useful synthons for the total synthesis of chiral 6-alkyl-δ-lactones, as exemplified by the preparation of both enantiomers of jasmine lactone ((6R)- and (6S)- 10 , resp.).  相似文献   

16.
(?)-(S)- and (+)-(R)-3-methylcyclopentene (1) has been prepared in a stereochemically unambiguous synthesis. The (S)-configuration for (?)-1 was confirmed by correlation with (?)-(S)-1-methylindane.  相似文献   

17.
Acyclic nucleosides of 4‐nitro‐1H‐imidazole and 4‐nitropyrazole have been synthesized by nucleophilic addition of the appropriate 4‐nitroazole to (?)‐(S)‐(hydroxymethyl)oxirane in the presence of a catalytic amount of potassium carbonate. (+)‐(R)‐3‐(4‐nitro‐1H‐imidazol‐1‐yl)propane‐1,2‐diol and (+)‐(R)‐3‐(2‐methyl‐4‐nitro‐1H‐imidazol‐1‐yl)propane‐1,2‐diol were also obtained in an independent reaction starting from appropriate 1,4‐dinitro‐1H‐imidazole and (+)‐(R)‐3‐aminopropane‐1,2‐diol. (+)‐(R)‐3‐(4‐Nitropyrazol‐1‐yl)propane‐1,2‐diol was also obtained by direct noncatalyzed addition of 4‐nitropyrazole to (?)‐(S)‐(hydroxymethyl)oxirane, whereas the (S)‐enantiomer was obtained by reaction of 4‐nitropyrazole with (+)‐(S)‐1,2‐O‐isopropylideneglycerol under Mitsunobu reaction conditions, followed by a cleavage of the isopropylidene group with 80% AcOH. Racemization during any of these syntheses has not been observed. 3‐(4‐Nitroazol‐1‐yl)propane‐1,2‐diols were incorporated into a 26‐mer oligonucleotide. UV Thermal melting studies of duplexes of the oligonucleotides with 4‐nitropyrazole or 4‐nitro‐1H‐imidazole paired with four natural bases showed moderately decreased stabilities of the duplexes. A narrow range of melting temperatures, typically being within 2° for each acyclic nucleoside, fulfill one of the requirements of using acyclic 4‐nitroazoles as general bases. Single incorporation of 4‐nitroazoles into a 14‐mer triplex forming oligonucleotide resulted in considerably decreased triplex stabilities.  相似文献   

18.
Enantiospecific Synthesis of (+)-(6S,8R,E)-Methyl 2,3-Didebydrononactate (+)-(6S,8R,E)-Methyl 2,3-didehydrononactate ( 7 ) has been synthesised from (?)-(3R)-methyl 3-hydroxy-butanoate with an enantiomeric excess ≥95%. The known stereoselective hydrogenation of 7 affords (?)-(2R,3R,6S,8R)-methyl nonactate ( 8 ) as the major isomer, a chiral synthon for the synthesis of nonactin.  相似文献   

19.
Discrepancies between chiroptical data from the literature and our determination of the structure of the title compounds (+)‐ 5 and (+)‐ 9a were resolved by an unambiguous assignment of their absolute configuration. Accordingly, the dextrorotatory cis‐3‐hydroxy esters have (3R,4R)‐ and the laevorotatory enantiomers (3S,4S)‐configuration. The final evidences were demonstrated on both enantiomers (+)‐ and (?)‐ 5 by biological reduction of 4 by bakers' yeast and stereoselective [RuII(binap)]‐catalyzed hydrogenations of 4 (Scheme 2), by the application of the NMR Mosher method on (+)‐ and (?)‐ 5 (Scheme 3), as well as by the transformation of (+)‐ 5 into a common derivative and chiroptical correlation (Scheme 4).  相似文献   

20.
The preparation and the CD spectra of optically pure (+)-trans-μ-[(1R,4S,5S,6R,7R,8S)-C,5,6,C -η : C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo [2.2.2]octanone)]bis(tricarbonyliron) ((+)- 7 ) and (+)-tricarbonyl[(1S,4S,5S,6R)-C-5,6,C-η-(5,6,7,8,-tetramethylidene-2-bicyclo[2.2.2]octanone)]iron ((+)- 8 ), and of its 3-deuterated derivatives (+)-trans-μ-[(1R,3R,4S,5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C-η-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]-(octanone)]bis(tricarbonyliron) ((+)- 11 ) and (+)-tricarbonyl[(1S,3R,4S,5S,6R)-C-5,6,C- η-(5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone)]iron ((+)- 12 ) are reported. The chirality in (+)- 7 and (+)- 8 is due to the Fe(CO)3 moieties uniquely. The signs of the Cotton effects observed for (+)- 7 and (+)- 8 obey the octant rule (ketone n→π*CO transition). Optically pure (?)-3R-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone ((?)- 10 ) was prepared. Its CD spectrum showed an ‘anti-octant’ behaviour for the ketone n→π*CO transition of the deuterium substituent. The CD spectra of the alcoholic derivatives (?)-trans-μ-[(1R,2R,4S, 5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]bis(tricarbonyliron) ((?)- 2 ) and (?)-tricarbonyl- [(1S,2R,4S,5S,6R)- C,5,6,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]iron ((?)- 3 ) and of the 3-denterated derivatives (?)- 5 and (?)- 6 are also reported. The CD spectra of the complexes (?)- 2 , (?)- 3 , (+)- 7 , and (+)- 8 were solvent and temperature dependent. The ‘endo’-configuration of the Fe(CO)3 moiety in (±)- 8 was established by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号