首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

2.
Danshen (DS) is a widely used traditional Chinese medicine for treating cardiovascular and cerebrovascular diseases. A simple, rapid and sensitive method was developed for identification of the in vivo metabolites in urine of WZS‐miniature pigs after oral administration of DS decoction by HPLC coupled with diode array detection with electrospray ionization tandem ion trap and time‐of‐flight mass spectrometry. This method has been successfully applied to simultaneous identification of 50 compounds (including 11 new ones) in pig urine. In addition, one new compound, (3‐hydroxyphenyl) crylic acid glycine methyl ester (C1), along with eight known ones were first isolated by column chromatography and identified by spectroscopic means, including 1D/2DNMR and mass spectrometry, as reference substances. Ten phenolic compounds (protocatechuic aldehyde, protocatechuic acid, caffeic acid, danshensu, ferulic acid, isoferulic acid, rosmarinic acid and salvianolic acid A/B/D) were found to be the main absorbed original constituents of DS decoction, which underwent the metabolic reactions of glucuronidation, sulfation, methylation, hydrogenation and glycine conjugation in vivo. In conclusion, the developed method is applicable to the analysis and identification of constituents in biological matrices after administration of DS decoction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Isoimperatorin (IP) and phellopterin (PP) are two furocoumarins existing in Angelicae Dahuricae Radix. There is an isopentenyloxyl substituted at C‐5 in IP, and an isopentenyloxyl and a methoxyl substituted at C‐8 and C‐5, respectively, in PP. To elucidate the in vivo metabolic characteristics of PP and IP, HPLC coupled with diode array detector and electrospray ionization ion trap time‐of‐flight mass spectrometry technique was used. In total, 111 metabolites, including 53 new ones, were identified from the urine and plasma samples of rats after oral administration of IP and PP, respectively. The metabolites were formed through eight reactions on IP and PP: oxidation, hydroxylation–hydrogenation, carboxylation on the isopentenyloxyl, O‐dealkylation, hydroxylation on the furocoumarin nucleus, ring‐opening reaction on the furan ring and reduction or ring‐opening reaction on the lactone ring. Among these, hydroxylation on the furocoumarin nucleus was found for the first time for in vivo metabolites of PP and IP, and the ring‐opening reaction on the furan ring or lactone ring was found for the first time for in vivo metabolites of isopentenyloxyl furocoumarins. The research gave us a new insight into the in vivo metabolic profiles of IP and PP, which could help us better understand their important roles as two active constituents of Angelicae Dahuricae Radix.  相似文献   

4.
Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is widely used for the treatment of cardiovascular and cerebrovascular diseases. This research focuses on the in vivo metabolism of Danshen decoction (DSD) in rats. After oral administration of DSD, the absorptive constituents and their metabolites in urine and plasma were analyzed by HPLC coupled with a photodiode array detector and electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. Samples were separated on a C18 column by gradient elution using 0.1% (v/v) aqueous formic acid and acetonitrile. As a result, 93 compounds from urine and 38 compounds from plasma were identified. Among them, lipo‐soluble diterpenoids (24 in urine and 15 in plasma) were reported for the first time as in vivo metabolites of DSD. According to the quantities and contents of the identified compounds, tanshinone IIA, cryptotanshinone and tanshinone I were deduced to be the major absorptive diterpenoids of DSD. Moreover, nine water‐soluble phenolics (caffeic acid, ferulic acid, danshensu, etc.) were proved to be the major absorptive constituents as reported. Most of the absorbed constituents underwent sulfation, glucuronidation, hydrogenation and hydroxylation in vivo. This investigation provided scientific evidence to obtain a more comprehensive metabolic profile of DSD. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Ganoderic acid B (GAB), a representative triterpenoid in Ganoderma lucidum, possesses various pharmaceutical effects and has been used as a chemical marker in quality control of G. lucidum and related products. The metabolites of GAB in vivo after its oral administration to rats were investigated by liquid chromatography coupled with electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. A total of 14 metabolites of GAB in rat plasma, bile and various organs were detected and identified by direct comparison with the authentic compounds and their characteristic mass fragmentation patterns. The results showed that oxidization and hydroxylation were the common metabolic pathways for GAB in rats. Moreover, some reduction metabolites of GAB were detected in rat kidney and stomach and glucuronidation only appeared in rat bile. This is the first report on the metabolites of GAB in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new HPLC-DAD-ESI-MS(n) method was developed for rapid separation, characterization and quantitation of flavonoids in Epimedium wushanense, a popular Chinese herbal medicine. For qualitative identification, a total of 37 compounds were characterized from the underground and aerial parts of E. wushanense. Among them, 28 compounds were prenylated flavonoids, and 23 were confirmed by comparing with reference standards. For quantitative analysis, 12 major flavonoids including kaempferol glycosides, desmethylicaritin glycosides, and icaritin glycosides were simultaneously determined by HPLC/UV. Samples were separated on a Waters Symmetry C(18) column at 35 °C eluted with a gradient three-component mobile phase of acetonitrile, methanol, and water containing 0.03% v/v formic acid. All the flavonoids showed good linearity (r(2) ≥0.9997). The recoveries varied from 92.6 to 106.1% at three concentration levels. This method was applied to the determination of 20 samples of different geographical sources, harvesting time, and plant parts. Contents of the predominant flavonoid, epimedin C, ranged from 1.4 to 5.1% in aerial parts and 1.0 to 2.8% in underground parts. The methods established in this paper were simple and reliable and could be used for the quality control of E. wushanense.  相似文献   

8.
Harpagoside, an iridoid glycoside, is the major bioactive constituent of the traditional Chinese medicine Scrophulariae Radix. High‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐ESI‐IT‐TOF‐MSn) was used to profile and identify the metabolites of harpagoside in rats in vivo and to study the distribution of these metabolites in rats for the first time. A total of 45 metabolites were identified, 37 of which were postulated to be new compounds. The number of detected metabolites in the heart, liver, spleen, lung, kidney, stomach and small intestine was 2, 9, 6, 16, 4, 16 and 6, respectively, which indicated that the target organs of harpagoside should be spleen, lung and stomach. The main types of metabolic reactions of harpagoside in rats are hydrolysis, reduction, sulfuric acid addition, hydroxylation, methoxylation, sulfate substitution, methylation, glucose conjugation and amino acid conjugation. Furthermore, 23 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological effects of harpagoside. Moreover, these findings provide a reference for studying the metabolism and distribution of iridoid compounds.  相似文献   

9.
Rapid resolution liquid chromatography (RRLC) coupled with diode array detection (DAD) and electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF MS) method was applied to the mass spectral study of a series of naturally occurring iridoid glycosides and phenylpropanoid glycosides in Radix Scrophulariae, which provides higher speed and increased sensitivity without loss of resolution. With dynamic adjustment as the key role of the fragmentor voltage and confirmed with authentic standards, valuable structural information regarding the nature of both the glycoside skeletons was thus obtained. Most compositions were found to possess organic acid moiety such as cinnamoyl, caffeoyl and ferulyol. Besides extensive fragmentation of the carbohydrate moiety, losses of the hydroxyl and glucose residue units showed in the spectra, permitting the exploration of the skeleton and the identity of substituents in the molecule. Ten major iridoid glycosides and 10 phenylpropanoid glycosides were identified or tentatively characterized based on their retention times, UV and TOF MS data. The major fragmentation pathways of PGs in Radix Scrophulariae obtained through the MS data was schemed systematically for the first time, which provides a reference for other PGs derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Isochlorogenic acid A is widely present in fruits, vegetables and herbal medicines, and is characterized by anti‐inflammatory, hepatoprotective and antiviral properties. However, little is known about its metabolic fate and pharmacokinetic properties. This study is thus designed to investigate the metabolic fate of isochlorogenic acid A. An analytical method based on high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (HPLC/Q‐TOF MS) was established to characterize the metabolites of isochlorogenic acid A in the plasma, urine and feces of rats. A total of 32 metabolites were identified. The metabolic pathways mainly include hydrolyzation, dehydroxylation, hydrogenation and conjugation with methyl, glucuronic acid, glycine, sulfate, glutathione and cysteine. Moreover, the pharmacokinetic profiles of all the circulating metabolites were investigated. M11 resulting from hydrolyzation, dehydroxylation and hydrogenation was the dominant circulating metabolite after the intragastric administration of isochlorogenic acid A. The results obtained will be useful for further study of elucidating potential bioactive metabolites which can provide better explanation of the pharmacological and/or toxicological effects of this compound.  相似文献   

11.
A high‐performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC‐PAD‐ESI‐MSn) method was developed to evaluate the quality of Hpericum japomicum through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Ultimate XB‐C18 analytical column (250 mm × 4.6 mm i.d., 5 µm) using an aqueous solution of acetic acid (pH 3.8) and methanol as the mobile phase. Ten samples of H. japomicum from various habitats were investigated and the correlation coefficients of similarity were determined from the HPLC fingerprints. By using an online ESI‐MSn, 20 common peaks in chromatographic fingerprints were identified as phenols, including flavones and their glycosides, flavonones and their glucosides, flavanols, xanthones, phloroglucinols, phenyl propanoids and chromones. Based on the above study, seven phenols which are considered to be major constituents in H. japomicum, including 3,4‐dihydroxybenzoic acid (1), taxfolin‐7‐O‐α‐l ‐rhamnoside (7), 7‐dihydroxy‐2‐(1‐methylpropyl)chromone‐8‐β‐d ‐glucoside (8), isoquercitrin (14), quercitrin (16), quercetin‐7‐O‐α‐l‐ rhamnoside (18) and quercetin (19) were quantified by the validated HPLC‐PAD method. This developed method by combination of chromatographic fingerprint and quantification analysis could be applied to control the quality of H. japomicum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The multiple bioactive constituents in Hedyotis diffusa Willd. (H. diffusa) were extracted and characterized by high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC‐ESI‐MSn). The optimized separation condition was obtained using an Agilent ZorBax SB‐C18 column (4.6×150 mm, 5 μm) and gradient elution with water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid), under which baseline separation for the majority of compounds was achieved. Among the compounds detected, 14 iridoid glucosides, 10 flavonoids, 7 anthraquinones, 1 coumarin and 1 triterpene were unambiguously identified or tentatively characterized based on their retention times and mass spectra in comparison with the data from standards or references. The fragmentation behavior for different types of constituents was also investigated, which could contribute to the elucidation of these constituents in H. diffusa. The present study reveals that even more iridoid glycosides were found in H. diffusa than hitherto assumed. The occurrence of two iridoid glucosides and five flavonoids in particular has not yet been described. This paper marks the first report on the structural characterization of chemical compounds in H. diffusa by a developed HPLC‐ESI‐MSn method.  相似文献   

13.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A new tandem time‐of‐flight mass spectrometer with an electrospray ionization ion source ‘ESI‐TOF/quadTOF’ was designed and constructed to achieve the desired aim of structural elucidation via high‐energy collision‐induced dissociation (CID), and the simultaneous detection of all fragment ions. The instrument consists of an orthogonal acceleration‐type ESI ion source, a linear TOF mass spectrometer, a collision cell, a quadratic‐field ion mirror and a microchannel plate detector. High‐energy CID spectra of doubly protonated angiotensin II and bradykinin were obtained. Several fragment ions such as a‐, d‐, v‐ and w‐type ions, characteristic of high‐energy CID, were clearly observed in these spectra. These high‐energy CID fragment ions enabled confirmation of the complete sequence, including leucine–isoleucine determinations. It was demonstrated that high‐energy CID of multiply protonated peptides could be achieved in the ESI‐TOF/quadTOF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Gigantol is a typical bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China for the treatment of diabetic cataract, cancer and arteriosclerosis obliterans and as a tonic for stomach nourishment, saliva secretion promotion and fever reduction. However, few studies have been carried out on its in vivo metabolism. In the present study, a rapid and sensitive method based on ultra‐performance liquid chromatography/electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q/TOF‐MS) in positive ion mode was developed and applied to identify the metabolites of gigantol in rat urine after a single oral dose (100 mg/kg). Chromatographic separation was performed on an Acquity UPLC HSS T3 column (100 × 2.1 mm i. d., 1.8 µm) using acetonitrile and 0.1% aqueous formic acid as mobile phases. A total of 11 metabolites were detected and identified as all phase II metabolites. The structures of the metabolites were identified based on the characteristics of their MS, MS2 data and chromatographic retention times. The results showed that glucuronidation is the principal metabolic pathway of gigantol in rats. The newly identified metabolites are useful to understand the mechanism of elimination of gigantol and, in turn, its effectiveness and toxicity. As far as we know, this is the first attempt to investigate the metabolic fate of gigantol in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Huo Luo Xiao Ling Dan (HLXLD), a Chinese herbal formula, is used in folk medicine for the treatment of arthritis and other chronic inflammatory diseases. However, the in vivo integrated metabolism of its multiple components remains unknown. In this paper, an ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q‐TOF‐MS) method was developed for detection and identification of HLXLD metabolites in rat urine at high and normal clinical dosages. The prototype constituents and their metabolites in urine were analyzed. The mass measurements were accurate within 8 ppm, and subsequent fragment ions offered higher quality structural information for interpretation of the fragmentation pathways of various compounds. A total of 85 compounds were detected in high dosages urine samples by a highly sensitive extracted ion chromatograms method, including 31 parent compounds and 54 metabolites. Our results indicated that phase 2 reactions (e.g. glucuronidation, glutathionidation and sulfation) were the main metabolic pathways of lactones, alkaloids and flavones, while phase I reactions (e.g. hydrogenation and hydroxylation) were the major metabolic reaction for coumarins, paeoniflorin and iridoids. This investigation provided important structural information on the metabolism of HLXLD and provided scientific evidence to obtain a more comprehensive metabolic profile. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A reversed-phase high-performance liquid chromatography-diode array detector-electrospray ionization multiple-stage tandem mass spectrometry (RP-HPLC-DAD-ESI-MS(n)) method has been developed for the detection and analysis of lignan constituents in the methanol extract from the fruits of Schisandra chinensis (Turcz.) Baill. RP-HPLC-DAD-ESI-MS(n) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MS(n)) have been applied to investigate the characteristic product ions of four lignan reference compounds. Then, the logical fragmentation pathways of the lignans have been proposed. By comparing the retention time (t(R)) of HPLC, the ESI-MS(n) data and the structures of analyzed compounds with the data of reference compounds and in the literature, 11 peaks in HPLC have been unambiguously identified and another 5 peaks have been tentatively identified or deduced. Also, in the present paper, the extracted ion chromatograms (EIC) have been used to analyze the lignan isomers. The experimental results demonstrate that RP-HPLC-DAD-ESI-MS(n) is a specific and useful method for the identification of the lignan constituents and their isomers.  相似文献   

19.
To profile the anti‐Coxsackie virus B3 constituents of Radix Astragali, an HPLC‐DAD‐MSn analytical method, combined with an in vivo test, has been developed to identify the constituents of the active part, which has been demonstrated to have potency to inhibit the proliferation of virus in cardiac muscle, alleviate infraction in heart and elevate the survival rate of the animal. By comparing their retention time and MS data with those obtained from the authentic compounds and the published data, a total of 19 compounds, including 11 isoflavonoids and eight saponins, were identified, among which one pterocarpane glucoside was reported for the first time. The present study provides an approach to rapidly screening bioactive constituents in traditional Chinese medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high‐resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate‐C18 column, and then analyzed by on‐line ion trap/time‐of‐flight mass spectrometry. With the assistance of mass defect filtering technique, full‐scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MSn spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N‐oxidation, epoxidation, methylation, dehydrogenation, de‐methoxylation, O‐demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号