首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lepimectin, as an emulsifiable concentrate, was sprayed on shallots at the recommended dose rate (10 mL/20 L) to determine its residue levels, dissipation pattern, pre‐harvest residue limits (PHRLs), and health risk. Samples were randomly collected over 10 days, extracted with acetonitrile, purified using an amino solid‐phase extraction (NH2‐SPE) cartridge and analyzed using a high‐performance liquid chromatography–photodiode array detection method. Field‐incurred samples were confirmed using ultra‐performance liquid chromatography–tandem mass spectrometry. The linearity was excellent, with a determination coefficient (R2) of ≥0.9991. The recoveries at two spiking levels (0.2 and 1.0 mg/kg) ranged from 84.49 to 87.64% with relative standard deviations of ≤7.04%. The developed method was applied to field samples grown in separate greenhouses, one located in Naju and one in Muan, in the Republic of Korea. The dissipation pattern was described by first‐order kinetics with half‐lives of 1.9 (Naju) and 1.7 days (Muan). The PHRL curves indicated that, if the lepimectin residues are <0.18 (Naju) and <0.13 mg/kg (Muan) 5 days before harvest, the residue levels will be lower than the maximum residue limit (0.05 mg/kg) upon harvesting. The risk assessment data indicated that lepimectin is safe for use in the cultivation of shallots, with no risk of detrimental effects to the consumer.  相似文献   

2.
The objective of this work was to establish a simple extraction method for the residual analysis of pyraclofos and tebufenpyrad in Perilla leaves. A QuEChERS (quick, easy, cheap, effective, rugged and safe) method was used for extraction using ethyl acetate as an extraction solvent, and cleanup was carried out using dispersive solid‐phase extraction technique. The samples were analyzed using gas chromatography with nitrogen phosphorous detector and confirmed by gas chromatography–mass spectrometry. The linearity was excellent (r2 = 1.0) in matrix‐matched calibration for both pesticides. The recoveries at two fortification levels were 80.76–95.38% with relative standard deviation lower than 5%. The limits of detection and limits of quantification were 0.01 and 0.033 mg/kg for both pesticides, respectively. The results revealed that the dissipation pattern of pyraclofos and tebufenpyrad followed first‐order kinetics. The pyraclofos and tebufenpyrad residues declined to a level below the maximum residue limits within 14 day between the last application and harvesting. We suggest that pyraclofos and tebufenpyrad could be used efficiently on perilla leaves under the recommended dosage conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An effective and sensitive chiral analytical method was established to investigate the stereoselective dissipation of rac‐dufulin in watermelon using ultra high performance liquid chromatography with a superchiral S‐OD chiral column (4.6 × 150 mm i.d., 5 μm) coupled with high‐resolution mass spectrometry. To optimize the pretreatment method for detecting rac‐dufulin in the three matrixes, different extraction solvents, extractant volumes, extraction times, and absorbents were investigated to improve extraction efficiency. Moreover, analysis of variance was used to perform method validation for determination of the two dufulin enantiomers in the three matrixes. Using the optimized method, good linearity was obtained (determination coefficient > 0.999). The limits of detection and quantification of the two dufulin enantiomers in soil, watermelon, and pulp were 0.15 and 0.5 μg/kg, respectively. The average recoveries of the two enantiomers in the three matrixes at four spiked levels ranged from 75.0 to 107.8%, with intra‐ and inter‐day relative standard deviations of 0.4–10.4%. In field trials, the R enantiomer was preferentially dissipated in watermelon. These method validation results confirmed that the developed method was convenient and reliable for the stereoselective determination of enantiomers of rac‐dufulin in watermelon.  相似文献   

4.
A new straightforward method based on cloud‐point extraction has been developed, optimized, and validated for the determination of doxepin in human plasma by high‐performance liquid chromatography separation and UV detection. The nonionic surfactant Triton X‐114 was chosen as the extraction solvent. Chromatography separation was performed on a μBondapakR C18 column (4.6 mm id × 300 mm, 3 μm particle size), which was used for isocratic elution at a detection wavelength of 289 nm. Under the optimum conditions, the linear range of doxepin in human plasma was 0.1–0.9 μg/mL. Also, the detection limit, preconcentration factor, and enrichment factor were 0.08 μg/mL, 50, and 49.0, respectively.  相似文献   

5.
Yang L  Gong D  Tang J  Luo J  Ding C 《色谱》2012,30(1):71-75
建立了同时测定稻田(稻田土壤、水和植株)中苄嘧磺隆和苯噻酰草胺残留量的高效液相色谱(HPLC)分析方法。稻田水样品用二氯甲烷直接萃取;稻田土壤样品用碱性乙腈-二氯甲烷(1:1, v/v)混合液直接提取;水稻植株样品用碱性二氯甲烷提取后,二氯甲烷提取液经弗罗里硅土柱净化。上述样品溶液采用C18不锈钢色谱柱(150 mm×4.6 mm, 5 μm)分离,流动相为水-甲醇(30:70, v/v),流速为0.5 mL/min,柱温为30 ℃,紫外检测波长为238 nm,外标法定量。苄嘧磺隆和苯噻酰草胺在0.05~5.00 mg/L范围内的线性关系均很好(r>0.9999)。在稻田水、土壤和水稻植株中添加3个水平(0.05, 0.10, 1.00 mg/kg)的苄嘧磺隆和苯噻酰草胺,两者的回收率均在85.39%~113.33%之间,相对标准偏差为0.91%~10.24%。这表明该方法的灵敏度、准确度和精密度均符合农药残留测定的技术要求。  相似文献   

6.
An ion‐moderated partition high‐performance liquid chromatography method was developed for the separation and identification of common organic carbonates. The separation of organic carbonates was achieved on an ion exclusion column with an exchangeable hydrogen ion. An isocratic, aqueous mobile phase was used for elution and detection was performed with a refractive index detector. The developed method was validated for specificity, linearity, limits of detection and quantification, precision and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limits of detection were 3.8–30.8 ppm for the analyzed carbonates. Improvements in the peak resolution of the chromatograms were achieved by decreasing the column temperature. Addition of the organic modifier, acetonitrile, to the eluent was found to have insignificant effects on the peak resolution. The developed method was demonstrated for analyzing organic carbonate components in the electrolyte system of a commercial lithium ion battery.  相似文献   

7.
Propafenone, a class Ic antiarrhythmic agent, is metabolized to 5‐hydroxypropafeone (5‐OHP) and N‐depropylpropafenone (NDPP). Simultaneous determination of serum propafenone and its metabolites was performed using HPLC equipped with a conventional octadecylsilyl silica column and ultraviolet detector. The wavelength was set at 250 nm. Propafenone and its metabolites in the serum were extracted using diethyl ether. The mobile phase solution, comprising 1‐pentanesulfonic acid sodium salt (0.1 m ), acetonitrile and acetic acid (280:185:2.5, v/v/v), was pumped at a flow rate of 1 mL/min. The recoveries of propafenone, 5‐OHP and NDPP were greater than 85, 82 and 60%, respectively, with the coefficients of variation (CVs) less than 5.4, 1.9 and 2.9%, respectively. The calibration curves were linear for a concentration range of 12.5–1500 ng/mL for propafenone and 2–500 ng/mL for 5‐OHP and NDPP (r > 0.999). CVs in the intraday assays were 1.0–3.8% for propafenone, 0.6–2.0% for 5‐OHP and 0.6–1.7% for NDPP. CVs in interday assays were 1.3–7.7% for propafenone, 1.1–6.5% for 5‐OHP and 5.4–8.0% for NDPP. The present HPLC method can be used to assess the disposition of propafenone and its metabolites for pharmacokinetic studies and therapeutic drug monitoring of propafenone.  相似文献   

8.
A novel and efficient sample preconcentration technique based on the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) coated with silica (SiO2) has been developed for extraction and determination of sulpiride. The functionalized MNPs showed excellent dispersibility in aqueous solution and were applied to magnetic solid‐phase extraction of sulpiride from human urine and blood prior to high‐performance liquid chromatography analysis. The separation, preconcentration and desorption procedure was completed in 10 min. Optimal experimental conditions, including sample pH, the amount of the MNPs, eluent type and volume, and the ultrasonication time were studied and established. The method showed good linearity for the determination of sulpiride in the concentration range of 10–1000 ng/mL in urine and blood. The recovery of the method was in the range between 91.2 and 97.5%, and the limit of detection was 2 ng/mL for sulpiride in human blood and urine. The results indicated that the present procedure is a suitable pretreatment method for biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, a simple, rapid, and sensitive method for the determination of nitrite (NO2?) in food samples by high‐performance liquid chromatography with fluorescence detection in acidic conditions had been developed. The derivatization of the nitrite with 2,3‐diaminonaphthalene was performed in acidic conditions to yield the highly fluorescent 2,3‐naphthotriazole, which was directly analyzed by high‐performance liquid chromatography with fluorescence detection without adjusting the solution to alkaline. The analysis column was reversed‐phase C8 column. A constant flow rate of 1.0 mL/min was employed using water/acetonitrile as the mobile phase in isocratic mode (70:30, v/v). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. The standard calibration curves were linear for nitrite in different matrixes in the concentration range of 0–100 μg/L, and the correlation coefficients ranged from 0.9978 to 0.9998. The limits of detection and quantification were in the ranges of 0.012–0.060 and 0.040–0.20 mg/kg, respectively. The recoveries of nitrite from samples spiked at three different concentrations were 74.0–113.2%, and the relative standard deviations of the recovery results (n = 6) were 1.67–10.8%. The proposed method has good repeatability and is very sensitive and simple. It has been successfully used to determine nitrite in foods.  相似文献   

10.
Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed‐phase ultra high‐performance liquid chromatography and normal‐phase high‐performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N‐phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N‐phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal‐phase high‐performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract.  相似文献   

11.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

12.
Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high‐performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high‐throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24‐run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.  相似文献   

13.
A simple, specific and sensitive HPLC method with UV detection was developed and validated for the determination of tectoridin in rat plasma for the first time. Chromatographic separation was performed on a WelchromTM C18 column (150 × 4.6 mm, i.d., 5 µm) at a flow rate of 1.0 mL min?1, using a mixture of methanol–2% HAc aqueous solution (31:69, v/v) as the mobile phase with UV detection at 266 nm. The calibration curves for tectoridin were linear over the concentration range of 1.10–274.40 µg mL?1 in rat plasma. The intra‐ and inter‐day accuracies (RE) were within ?3.23% and 4.11%. The intra‐ and inter‐day precisions (RSD) were not more than 2.74 and 4.72%, respectively. The present method was successfully applied to the pharmacokinetic studies of tectoridin in rats after intravenous administration of three different doses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Estrone, 17β‐estradiol and 17α‐ethinylestradiol are increasingly recognised as important micropollutants to be monitored in wastewater treatment plants. These estrogens are retained onto sludge due to their high adsorption and since they are largely used in land applications, the monitoring of these chemicals in sludge samples is of great importance. This study describes a method for the determination of estrone and 17α‐ethinylestradiol in fresh sludge samples. After spiking fresh digested sludge with estrone and 17α‐ethinylestradiol and maintaining in contact during 5, 30 and 60 min, the freeze‐dried samples were subjected to ultrasonic liquid extraction, with methanol and acetone, and analysed by high‐performance liquid chromatography with fluorescence detection. The average recoveries obtained for estrone and 17α‐ethinylestradiol using the different contact times were 103 ± 3 and 97 ± 4%, respectively. Fresh sludge samples from one waste water treatment plant located in Portugal were analysed and estrone was detected in primary fresh sludge, anaerobic digested sludge and dehydrated sludge at a concentration in the range of 1–4.8 μg/g. The method here developed does not require any sample clean‐up, being fast and simple, reliable and inexpensive, making possible its application for monitoring the contamination of sludge with these estrogens.  相似文献   

15.
The monosaccharides GlcNAc (N‐acetylglucosamine) and the home‐made GlcNC16 (N‐palmitoyl‐D‐glucosamine) were labeled with 2‐AB (2‐aminobenzamide) by reductive amination of the sugar. The aldehyde group of the monosaccharide reacts with the amino group of 2‐AB, forming a Schiff base. In the second step, the Schiff base is reduced with sodium cyanoborohydride to yield a stable secondary amine. We describe here a simple and fast procedure. Previous studies reported the same labeling at high concentration (10?1 M) during 30 h with further purification steps. In the present paper all operations were carried out in an Eppendorf tube and the reaction medium was directly analyzed without purification. Using the described protocol, the whole procedure can be accomplished in less than 6 h at 65°C at very low concentration (10?4 M). For both GlcNC16 and GlcNAc, the 2‐AB labeling conditions were optimized and, in addition, new conditions of high‐performance liquid chromatography analysis were developed. These N‐alkylated sugars were analyzed on reversed‐phase HPLC with fluorimetric detection at excitation and emission wavelengths of 340 and 400 nm, respectively. The separation was achieved on a C18 column with a gradient mobile phase composed of water (0.1% formic acid)–methanol (volume varying) in less than 19 min with 12.5 and 18.3 min retention times for GlcNAc and GlcNC16, respectively. Positive‐ion electrospray ionization mass spectrometry (ESI‐MS) analysis enabled their structural determination. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Chitosan‐grafted polyaniline was synthesized and applied as a sorbent for the preconcentration of phthalate esters in dispersive solid‐phase extraction. By coupling dispersive solid‐phase extraction with high‐performance liquid chromatography and response surface methodology (central composite design), a reliable, sensitive, and cost‐effective method for simultaneous determination of phthalate esters including dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl)phthalate was developed. The morphology of sorbent had been studied by scanning electron microscopy and its chemical structure confirmed by Fourier transform infrared spectroscopy. Under optimum condition, good linearity was observed in the range of 5.0–5000.0 ng/mL. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were 0.1–0.3 and 0.3–1 ng/mL, respectively. The relative standard deviations were less than 8.8%. Finally, this procedure was employed for extraction of trace amounts of phthalic acid esters in milk samples, the relative recoveries ranged from 82 to 103%.  相似文献   

17.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

18.
Nitric oxide synthase (NOS) inhibitors are potential drug candidates due to the critical role of an excessive production of nitric oxide in a range of diseases. At present, the radiometric detection of l ‐[3H]‐citrulline produced from l ‐[3H]‐arginine during the enzymatic reaction is one of the most accepted methods to assess the in vitro activity of NOS inhibitors. Here we report a fast, easy, and cheap reversed‐phase high‐performance liquid chromatography method with fluorescence detection, based on the precolumn derivatization of l ‐citrulline with o‐phthaldialdehyde/N‐acetyl cysteine, for the in vitro screening of NOS inhibitors. To evaluate enzyme inhibition by the developed method, N‐[3‐(aminomethyl)benzyl]acetamidine, a potent and selective inhibitor of inducible NOS, was used as a test compound. The half maximal inhibitory concentration obtained was comparable to that derived by the well‐established radiometric assay.  相似文献   

19.
Ferruginol, a diterpene phenol, has recently received attention for its extensive pharmacological properties, including anti‐tumor, antibacterial, cardio‐protective and gastroprotective effects. In the present study, a high‐performance liquid chromatographic (HPLC) method was developed for determination of ferruginol in rat plasma and applied for the pharmacokinetics study. The HPLC assay was performed with a VP ODS‐C18 column. The mobile phaseconsisted of methanol and 1% acetic acid solution (90:10, v/v). The flow rate was 1.0 mL/min, and the wavelength was set at 270 nm. This method was linear over the studied range of 0.1–10.0 µg/mL for ferruginol. The correlation coefficient was 0.9998. The intra‐day and inter‐day precisions were better than 4 and 5%, respectively. The extraction recovery and accuracy were greater than 97 and 96%, respectively. The detection limit was 30 ng/mL. The mean maximum concentration of ferruginol in rat plasma was 3.14 µg/mL at 40 min after oral administration at a dose of 20 mg/kg. Ferruginol was absorbed quickly p.o. with t1/2ka = 14.86 min and had a high rate of elimination with t1/2 = 41.73 min. The pharmacokinetic process of ferruginol in rat was well described with a one‐compartment model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号