首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

2.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

3.
A sensitive capillary electrophoretic method featuring spectrophotometric detection using a commercial Z‐cell was devised for the assay of 8‐hydroxy‐2′‐deoxyguanosine (8OHdG) in human urine. Solid‐phase extraction (SPE) based on hydrophilic‐lipophilic‐balanced RP sorbent was utilized for urine sample pretreatment and analyte preconcentration. The separation was carried out in conventional fused‐silica capillaries employing a Z‐cell with hydrodynamic sample injection (at 50 mbar for 12 s). The BGE (pH* 9.2, adjusted with 1 M NaOH) contained 0.15 M boric acid and 10% v/v ACN. The detection wavelength was 282 nm. The calibration curve for 8OHdG (measured in spiked urine) was linear in the range 10–1000 ng/mL; R2 = 0.9993. The LOD was 3 ng/mL (11 nmol/L) of 8OHdG. Determination of the 8OHdG urinary levels was possible even in healthy individuals.  相似文献   

4.
A series of cationic drug‐like substances with distinct basicity, hydrogen‐bonding ability, and hydrophobicity, including three catecholamines, two beta‐agonists, and thirteen beta‐blockers, was successfully detected in a capillary electrophoresis system using an end‐capillary coupled potentiometric sensor consisting of a PVC‐based liquid membrane deposited directly on a 100 μm diameter copper rod. The electrophoretic separation was performed on a 72 cm×75 μm id uncoated fused‐silica capillary with an acidic background electrolyte containing phosphoric acid in a water–acetonitrile mixture, pH* 2.8. Samples were injected electrokinetically at 5.0 kV for 10 s and a running voltage of 19.5 kV was applied. Excluding the bufuralol/practolol pair, baseline separation of all substances was achieved in the developed CE system within 9 minutes. A linear relationship (R2 0.8752) between the sensitivity of the applied potentiometric detector and the parameter log P characterising the hydrophobicity of the analytes was demonstrated. The best observable limits of detection (LODs) were obtained for the highly hydrophobic substances, i. e. bufuralol (8.10×10–8 M injected concentration, S/N = 3), propranolol, alprenolol, and clenbuterol (ca. 1.10×10–7 M). In the case of hydrophilic catecholamines and carbuterol their LODs with potentiometric detection were lowered by a factor of almost one thousand, reaching a value of 6.6×10–5 M.  相似文献   

5.
Use of a square‐wave potential program for time‐dependent amperometric detection of analyte zones in capillary electrophoresis (CE) is described. Electrochemical detection for CE requires that the separation field be isolated from that of the electrochemical detection. This is generally done by physically separating the CE separation field from that of the detection. By applying a time variant potential program to the detection electrode, the detector current has a time dependence that can be used to help isolate the electrochemical detection current from that of the separation. When using a 20 μm inner‐diameter capillary, we find that a square‐wave potential program decreases the RMS baseline current from 4.5×10?10 A, found with a constant potential amperometric detection, to 1.1×10?10 A when using a square‐wave potential program. With a 75 μm inner‐diameter capillary, the improvement is even more dramatic, from 2.3×10?9 A with amperometric detection to 2.06×10?10 A when using a 1 Hz square‐wave potential program. When not using the time‐dependent detection with the 75 μm capillary, the analyte zones were beneath the S/N for the system and not detected. With the square‐wave potential program and time‐dependent detection, however, the analyte zones for an electrokinetic injection of 200 μM solution of 2,3‐dihydroxybenzoic acid were observed with the 75 μm inner‐diameter capillary. The improvement in the ability to discriminate the analytical signal from the background found experimentally is consistent with modeling studies.  相似文献   

6.
Iron nanoparticles were prepared by a green method following functionalization using 1‐butyl‐3‐methylimidazolium bromide. 1‐Butyl‐3‐methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid‐phase membrane micro‐tip extraction to separate vitamin B complex from plasma before high‐performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high‐performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57–39.47, 1.12–6.00 and 1.84–26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices.  相似文献   

7.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

8.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

9.
In this study, we investigated the performance of several commercial sorbents (Sep‐pack® C18, tC18, C8 and tC2, Oasis® HLB, Isolute® ENV+, Strata?‐X and Oasis® MCX) for the determination of opioid peptides by solid‐phase extraction coupled on‐line to capillary electrophoresis (SPE‐CE). First, standard solutions were analyzed in order to achieve the lowest LOD and the best electrophoretic separations using UV detection. The best results were obtained using C18, C8 and tC2 sorbents, which were examined for the analysis of spiked human plasma samples. A double‐step sample clean‐up pretreatment, which consisted of precipitation with acetonitrile and filtration, was needed to prevent saturation of the on‐line SPE microcartridge. The filtration step was critical to obtain optimum analyte recovery and to clean up the sample matrix. A range of centrifugal filters and filtration conditions were tested and the recoveries of the sample pretreatment were evaluated by CE‐ESI‐MS. The LODs attained through SPE‐CE‐UV were approximately ten‐fold better with C18 than with C8 and tC2. The 0.1 μg/mL LODs achieved by C18‐SPE‐CE‐UV were further improved until we could detect 1 ng/mL concentrations of opioid peptides in plasma samples by C18‐SPE‐CE‐ESI‐MS, due to the outstanding selectivity of the MS detection.  相似文献   

10.
A simple and reliable method was established for simultaneous determination of 4‐hydroxyphenyl acetic acid, 4‐hydroxyphenyl lactic acid, and 3,4‐hydroxyphenyl propionic acid in human urine by high‐performance liquid chromatography with fluorescence detection. Solid‐phase extraction was used to eliminate the interferences in urine. The separation of three analytes was achieved using a C18 column and a mobile phase formed by a 95:5 v/v mixture of 50 mmol/L ammonium acetate buffer at pH 6.8 that contained 5 mmol/L tetrabutyl ammonium bromide and acetonitrile. Under the optimized conditions, the detection limits of 4‐hydroxyphenyl acetic acid, 4‐hydroxyphenyl lactic acid, and 3,4‐hydroxyphenyl propionic acid were 4.8 × 10−3, 8.80 × 10−3, and 9.00 × 10−3 mg/L, respectively, and the recoveries were in the range of 85.0–120.0% with relative standard deviations of 1.5–3.1%. This method was used to analyze urine samples from breast cancer patients, healthy people and post‐surgery breast cancer patients. Significant differences in urinary levels of 4‐hydroxyphenyl acetic acid and 4‐hydroxyphenyl lactic acid could be found between the breast cancer patients group and other two groups. No effect of age and sex was observed on the urinary levels of 4‐hydroxyphenyl acetic acid and 4‐hydroxyphenyl lactic acid. This method might be helpful for cancer biomarkers discovery in urine.  相似文献   

11.
A sensitive capillary electrophoresis (CE) method with chemiluminescence (CL) detection was developed for the determination of homocysteine (HCys) in human plasma. In this work, N‐(4‐aminobutyl)‐N‐ethylisoluminol was used as tagging reagent to label the analyte for achieving high assay sensitivity. N‐(4‐Aminobutyl)‐N‐ethylisoluminol‐tagged HCys after CE separation reacted with hydrogen peroxide in the presence of horseradish peroxidase, producing CL emission. Experimental conditions for labeling analyte, CE separation, and CL detection were studied. The CL intensity was proportional to the concentration of HCys in the range of 2.5×10?8 to 5.0×10?6 M. Detection limit (S/N=3) was 7.6×10?9 M. Human plasma samples from healthy donors were analyzed by the presented method. HCys levels were found to be in the range of 9.50–15.3 μM.  相似文献   

12.
Here, a simple micro free‐flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο‐BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion‐exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion‐exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο‐BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10?11 M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE.  相似文献   

13.
A sensitive method based on gold nanoparticle‐enhanced CE‐chemiluminescence (CL) detection was developed for quantifying uric acid (UA) in serum. In this work, gold nanoparticles were added into the running buffer of CE to catalyze the post‐column CL reaction between luminol and hydrogen peroxide, achieving highly efficient CL emission. Negative peaks were produced due to the inhibitory effects on CL emission from UA eluted from the electrophoretic capillary. The decrease in CL intensity was proportional to the concentration of UA in the range of 2.5×10?7–1.0×10?5 M. Detection limit was 4.6×10?8 M UA. Ten human serum samples were analyzed by the presented method. Serum level of UA was found to be in the range from 204 to 324 μM for healthy subjects (n=5), and from 464 to 497 μM for diabetic patients (n=5). The two groups were significantly different (p<0.05). The results suggested a potential application of the proposed assay in rapid primary diagnosis of diseases such as diabetes.  相似文献   

14.
In this work, an untargeted metabolomic approach based on sensitive analysis by on‐line solid‐phase extraction capillary electrophoresis mass spectrometry (SPE‐CE‐MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild‐type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18‐SPE‐CE‐MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR‐ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow‐up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters.  相似文献   

15.
Non‐aqueous capillary electrophoresis–mass spectrometry (NACE‐MS) was developed for trace analyses of β‐agonists (i.e. clenbuterol, salbutamol and terbutaline) in pork. The NACE was in 18 mM ammonium acetate in methanol–acetonitrile–glacial acetic acid (66 : 33 : 1, v/v/v) using a voltage of 28 kV. The hyphenation of CE with a time‐of‐flight MS was performed by electrospray ionization interface employing 5 mM ammonium acetate in methanol–water (80 : 20, v/v) as the sheath liquid at a flow rate of 2 μL/min. Method sensitivity was enhanced by a co‐injection technique (combination of hydrodynamic and electrokinetic injection) using a pressure of 50 mbar and a voltage of 10 kV for 12 s. The method was validated in comparison with HPLC–MS‐MS. The NACE‐MS procedure provided excellent detection limits of 0.3 ppb for all analytes. Method linearity was good (r2 > 0.999, in a range of 0.8–1000 ppb for all analytes). Precision showed %RSDs of <17.7%. Sample pre‐treatment was carried out by solid‐phase extraction using mixed mode reversed phase/cation exchange cartridges yielding recoveries between 69 and 80%. The NACE‐MS could be successfully used for the analysis of β‐agonists in pork samples and results showed no statistical differences from the values reported by the Ministry of Public Health, Thailand using HPLC‐MS‐MS method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Monoamine acidic metabolites in biological samples are essential biomarkers for the diagnosis of neurological disorders. In this work, acrylamide‐functionalized graphene adsorbent was successfully synthesized by a chemical functionalization method and was packed in a homemade polyether ether ketone micro column as a micro‐solid‐phase extraction unit. This micro‐solid‐phase extraction unit was directly coupled to high‐performance liquid chromatography to form an online system for the separation and analysis of three monoamine acidic metabolites including homovanillic acid, 5‐hydroxyindole‐3‐acetic acid, and 3,4‐dihydroxyphenylacetic acid in human urine and plasma. The online system showed high stability, permeability, and adsorption capacity toward target metabolites. The saturated extraction amount of this online system was 213.1, 107.0, and 153.4 ng for homovanillic acid, 5‐hydroxyindole‐3‐acetic acid, and 3,4‐dihydroxyphenylacetic acid, respectively. Excellent detection limits were achieved in the range of 0.08–0.25 μg/L with good linearity and reproducibility. It was interesting that three targets in urine and plasma could be actually quantified to be 0.94–3.93 μg/L in plasma and 7.15–19.38 μg/L in urine. Good recoveries were achieved as 84.8–101.4% for urine and 77.8–95.1% for plasma with the intra‐ and interday relative standard deviations less than 9.3 and 10.3%, respectively. This method shows great potential for online analysis of trace monoamine acidic metabolites in biological samples.  相似文献   

17.
An indirect simple and rapid cloud point extraction is proposed for separation and preconcentration of sulfadiazine and its determination by flow injection‐flame atomic absorption spectroscopy (FI‐FAAS). The sulfadiazine from 35 mL of solution was readily converted to silver sulfadiazine upon addition of silver nitrate (9.7 × 10‐5 mol/L). Then, Triton X‐114 a non ionic surfactant was added and the solution was heated to 60 °C. At this stage, two separate phases was formed and silver sulfadiazine enters the surfactant rich phase of non‐ionic micelles of Triton X‐114. The surfactant‐rich phase (~50 μL) was then separated and diluted to 300 μL with acidic methanol. The concentration of silver in the surfactant‐rich phase which is proportional to the concentration of sulfadiazine in sample solution was determined by FI‐FAAS. The parameters affecting extraction and separation were optimized. Under the optimum conditions (i.e. pH 2‐10, silver concentration (9.7 × 10 ‐5 mol/L), Triton X‐114 (0.075% v/v) and temperature 60 °C) a preconcentration factor of 117 and a relative standard deviation of 4.9% at 37 μg L‐1 of sulfadiazine was obtained. The method was successfully applied to analysis of milk, urine and tablet samples and accuracy was determined by recovery experiments.  相似文献   

18.
Cation‐selective exhaustive injection and sweeping followed by a MEKC separation is evaluated for the sensitive analysis of 5‐nitroimidazoles in untreated human serum and urine. Deproteinized serum and urine samples were diluted 76 and 143 times, respectively, in a low‐conductivity solvent (5.00 mM orthophosphoric acid containing 5.0% v/v methanol). Samples were electrokinetically injected at 9.8 kV for 632 s in a previously conditioned fused‐silica capillary (65.0 cm × 50 μm id). Separation was performed at –30 kV and 20°C using 44 mM phosphate buffer (pH 2.5), 123 mM SDS, and 8% v/v tetrahydrofurane as BGE. Signals were monitored at 276 nm and peak area was selected as analytical response. Good linearity (R2 ≥ 0.988) and LODs lower than 1.5 and 1.8 μg/mL were achieved in serum and urine, respectively.  相似文献   

19.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

20.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号