首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We investigate the transport scattering time, the single-particle relaxation time and the magnetoresistance of a quasi-two-dimensional electron gas in a GaP/AlP/GaP quantum well at zero and finite temperatures. We consider the interface-roughness and impurity scattering, and study the dependence of the mobility, scattering time and magnetoresistance on the carrier density, temperature and local-field correction. In the case of zero temperature and Hubbard local-field correction our results reduce to those of Gold and Marty (Physica E 40 (2008) 2028; Phys. Rev. B 76 (2007) 165309). We also discuss the possibility of a metal–insulator transition which might happen at low density.  相似文献   

2.
Cyclotron resonance of two-dimensional electrons is studied at low temperatures down to 0.4 K for a high-mobility Si/SiGe quantum well which exhibits a metallic temperature dependence of dc resistivity ρ. The relaxation time τ(CR) shows a negative temperature dependence, which is similar to that of the transport scattering time τ(t) obtained from ρ. The ratio τ(CR)/τ(t) at 0.4 K increases as the electron density N(s) decreases, and exceeds unity when N(s) approaches the critical density for the metal-insulator transition.  相似文献   

3.
The transport time and the single-particle relaxation times in a two subband system of a two-dimensional electron gas have been calculated. Screening and density of states effects have been taken into account under the assumption that disorder leads to localized states in both subbands. It has been found that the single-particle relaxation time of the second subband is always larger than that for the first subband. The transport time of the second subband can be smaller or larger than the transport time of the first subband. The text was submitted by the authors in English.  相似文献   

4.
The electron spin relaxation times by piezoelectric and polar optical phonon scattering in GaAs are calculated using the formula derived from the projection-reduction method. The temperature, magnetic field, and electron density dependences of the relaxation time are investigated. The electrons are found to be scattered mostly by piezoelectric phonons at low temperatures and polar optical phonons at high temperatures. The electron density affects the magnetic field dependence of the relaxation time at low temperatures but have only slight affects at high temperatures.  相似文献   

5.
首先回顾了描写核多体系统输运现象的一些主要模型和方法,然后介绍了输运现象微观动力学基础研究上一些新的结果,强调了单粒子运动动力学特征在建立集体输运方程和理解超重核合成机制上的重要作用。能量耗散和熵产生的数值计算结果表明,集体运动耗散过程可分为退相干、弛豫和定态等3 个阶段,弛豫过程通常表现为非常复杂的反常扩散过程。在这些理论工作的基础上,提出了一种自洽地分离核多体系统集体和单粒子变量的可能途径。In this article, I provide a simple review on conventional methods and models on the transport phenomenon of nuclear many-body systems. By exploiting the basic idea of time-dependent projection operator, I recommend a novel method to derive the transport equation for collective motion which is embedded on the microscopic dynamics of timedependent single-particle motion. It is emphasized that the microscopic dynamics of single-particle motion should play an important role for understanding the dynamics of nuclear reaction and the synthesis mechanisms of new superheavy elements. The numerical results of energy dissipation and entropy production indicate that the collective motion passes through three stages, such as dephasing/decoherence, statistical relaxation and stationary state. The statistical relaxation is a complex anomalous diffusion process in general. With the aid of above analysis and results, a possible way to define the collective and single-particle variables for the realistic nuclear many-body systems is proposed.  相似文献   

6.
We analyze a set of 10 M-step molecular dynamics (MD) data of low-temperature SPC/E model water with a phenomenological analytical model. The motivation is twofold: to extract various k-dependent physical parameters associated with the single-particle or the self-intermediate scattering functions (SISFs) of water at a deeply supercooled temperature and to apply this analytical model to analyses of new high resolution quasielastic neutron scattering data presented elsewhere. The SISF of the center of mass computed from the MD data show clearly time-separated two-step relaxations with a well defined plateau in between. We model the short time relaxation of the test particle as a particle trapped in a harmonical potential well with the vibrational frequency distribution function having a two-peak structure known from previous inelastic neutron scattering experiments. For the long time part of the relaxation, we take the alpha relaxation suggested by mode-coupling theory. The model fits the low-temperature SISF over the entire time range from 1 fs to 10 ns, allowing us to extract peak positions of the vibrational density of states, the structural relaxation rate 1/tau of the cage (the potential well) and the stretch exponent beta. The structural relaxation rate has a power law dependence on the magnitude of the wave vector transfer k and the stretch exponent varies from 0.55 at large k to unity at small k.  相似文献   

7.
A calculation of relaxation time for (i) electron–electron scattering in a modulation-doped superlattice of type-I and (ii) electron–electron, hole–hole and electron–hole scattering processes in a compositional superlattice of type-II has been performed, using Fermi's golden rule. As compared to a two-dimensional electron gas system, both intralayer and interlayer interactions, between charge carriers in a superlattice, contribute to relaxation time. It is found that scattering processes at all possible value of momentum transfer contribute to relaxation time, for a given value of temperature and carrier density. We further find interlayer interactions in a superlattice make a significant contribution to relaxation time. Relaxation time is found to decrease on increasing temperature, carrier density and single particle energy, in a superlattice. The computed relaxation time for an electron (hole) in a superlattice enhances on increasing the width of layer consisting of electrons (holes). The electron–hole (hole–electron) scattering process in a type-II superlattice yields maximum contribution to the relaxation time when a hole layer lies exactly in between two consecutive electron layers.  相似文献   

8.
In the framework of the many-body theory, the differential and total cross sections of elastic scattering of slow electrons by the negative lithium ion Li are obtained. Calculations are performed both in the Hartree-Fock single-particle approximation and with regard to many-electron correlations, which take into account the dynamic polarization of the core. Features observed in the behavior of the phases and cross sections for p and d partial waves are associated with resonance scattering of electron waves. Considering the dynamic polarization of the core by an incident electron heightens the diffraction character of the scattering. The real process is compared with particle scattering in models with a repulsive potential.  相似文献   

9.
A theoretical study of many-body effects in quasi-two-dimensional electron-hole systems is presented. The renormalized single-particle energies and the exciton binding energy are calculated as functions of the carrier density and temperature. A simple model for the nonlinear excitonic absorption and refraction is proposed.  相似文献   

10.
We describe a numerical scheme of combining Monte Carlo procedure and quantum scattering theory to simulate electron transport processes through nanostructures. The transport of electrons through a nanostructure is a highly nontrivial nonequilibrium process in which we should consider the interplay of (i) complicated many-body quantum states in nanostructure, (ii) thermal relaxation processes keeping the leads (electron reservoirs) in local equilibrium, (iii) the coupling between the leads and the nanostructure, and (iv) the bias causing nonequilibrium, current, and evolution of quantum states in the nanostructure. Considering the quantum coherence within the nanostructure, we include the degrees of freedom of the nanostructure and a single tunneling electron and solve the Schrödinger equation for the many-body states to obtain the scattering matrix in the Fock space from which both the transmission of the electron and the variation of the states in nanostructure can be full quantum-mechanically calculated. The transport is investigated by the Monte Carlo simulation of successive scattering events of single electrons which are sampled with the Metropolis scheme governed by the scattering probabilities, the thermal statistics in the leads, and the applied bias. By this way from a given initial nanostructure state we can calculate the time evolutions of the current and the internal state. As examples we investigate the transmission of electrons through a two-level system. It is shown that the proposed method can properly deal with the inelastic effects in transport processes.  相似文献   

11.
The small, about 30% magnetoresistance at the onset of full spin polarization in the 2D electron system in a modulation-doped Si/SiGe quantum well gives evidence that it is the remote doping that determines the transport scattering time. Measurements of the mobility in this strongly-interacting electron system with remote-doping scattering allow us to arrive at a conclusion that the Hubbard form underestimates the local field corrections by about a factor of 2.  相似文献   

12.
《Physics letters. A》2014,378(18-19):1336-1340
Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron–phonon scattering. The intervalley electron–phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.  相似文献   

13.
We present a theory that accurately describes the counting of excited states of a noninteracting fermionic gas. At high excitation energies the results reproduce Bethe's theory. At low energies oscillatory corrections to the many-body density of states, related to shell effects, are obtained. The fluctuations depend nontrivially on energy and particle number. Universality and connections with Poisson statistics and random matrix theory are established for regular and chaotic single-particle motion.  相似文献   

14.
The symmetric heavy-light ansatz is a method for finding the ground state of any dilute unpolarized system of attractive two-component fermions. Operationally it can be viewed as a generalization of the Kohn-Sham equations in density functional theory applied to N -body density correlations. While the original Hamiltonian has an exact Z2 symmetry, the heavy-light ansatz breaks this symmetry by skewing the mass ratio of the two components. In the limit where one component is infinitely heavy, the many-body problem can be solved in terms of single-particle orbitals. The original Z2 symmetry is recovered by enforcing Z2 symmetry as a constraint on N -body density correlations for the two components. For the 1D, 2D, and 3D attractive Hubbard models the method is in very good agreement with exact Lanczos calculations for few-body systems at arbitrary coupling. For the 3D attractive Hubbard model there is very good agreement with lattice Monte Carlo results for many-body systems in the limit of infinite scattering length.  相似文献   

15.
The subband structure for electrons in Si/SiGe strained layer superlattices along the (100) direction is calculated self-consistently including many-body effects in the local density approximation. The strain induced splitting of the six-fold degenerate conduction band results in different potential wells for different valleys. The charge distribution between the layers and valleys is calculated versus carrier concentration and conduction band offset for different strains. An estimate for the band offsets is obtained by comparison of experimental results with the calculations.  相似文献   

16.
In the (e, 2e) experiment a beam of electrons intersects a beam of slowly moving atoms or molecules, and pairs of emerging electrons are detected, in coincidence, at measured energies and angles. The momentum transfer distribution is closely related to the single-particle momentum distribution for a particular quantum state of the scattering molecule. The relative cross sections for different quantum states contain information about the relationship of single-particle orbitals to the many-body wave-function. The theoretical basis for interpretation is presented and shown to be self-consistent. The results for several experimental studies of atomic and molecular structure are analysed and the potential for further studies is discussed.  相似文献   

17.
We use the numerical renormalization group method to calculate the single-particle matrix elements T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T=0 temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections, we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering cross section sigma(inel)(omega). We find an almost linear frequency dependence of sigma(inel)(omega) below the Kondo temperature T(K), which crosses over to a omega(2) behavior only at extremely low energies. Our method can be generalized to other quantum impurity models.  相似文献   

18.
An expression has been derived for the relaxation time due to surface roughness scattering of a one dimensional electron gas (1DEG) in a narrow channel FET. The bumps in the interface are assumed to have Gaussian autocorrelation. The values of mobility at low temperature are calculated for the 1DEG in GaAs HEMTs for different 1D densities and are compared with the values limited by phonon and impurity scattering. For moderate values of 1D density, surface roughness scattering is as important as the impurity scattering. A rough estimate of the effect of screening on the values of mobilities is also made.  相似文献   

19.
Electron scattering from boundaries and impurities destroys the single-particle picture of the electron–phonon interaction. We show that quantum interference between ‘pure‘ electron–phonon and electron–boundary/impurity scattering may result in the reduction as well as to the significant enlargement of the electron dephasing rate. This effect crucially depends on the extent, to which electron scatterers, such as boundaries and impurities, are dragged by phonons. Static and vibrating scatterers are described by two dimensionless parametersqTl and qTL, where q is the wavevector of the thermal phonon, l is the total electron mean-free path, L is the mean-free path due to scattering from static scatterers. According to the Pippard ineffectiveness condition , without static scatterers the dephasing rate at low temperatures is slower by the factor 1 / ql than the rate in a pure bulk material. However, in the presence of static potential the dephasing rate turns out to be 1 / qL times faster. Thus, at low temperatures electron dephasing and energy relaxation may be controlled by electron boundary/impurity scattering in a wide range.  相似文献   

20.
The lifetimes of quantum excitations are directly related to the electron and phonon energy linewidths of a particular scattering event. Using the versatile double time thermodynamic Green’s function approach based on many-body theory, an ab-initio formulation of relaxation times of various contributing processes has been investigated with newer understanding in terms of the linewidths of electrons and phonons. The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering. The lattice thermal conductivities of three samples of GaAs have been analysed on the basis of modified Callaway model and a fairly good agreement between theory and experimental observations has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号