首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different Néel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet (RVB) spinon pairs with a lowering of the spinon gap. Lowering the temperature, the approach exhibits two crossover temperatures: at the higher crossover a finite density of incoherent holon pairs are formed leading to a reduction of the hole spectral weight, while at the lower crossover a finite density of incoherent spinon RVB pairs are also formed, giving rise to a gas of incoherent preformed hole pairs, and magnetic vortices appear in the plasma phase. Finally, at a even lower temperature the hole pairs become coherent, the magnetic vortices becoming dilute and superconductivity appears. The superconducting mechanism is not of BCS-type since it involves a gain in kinetic energy (for spinons) coming from the spin interactions.  相似文献   

2.
Recent photoemission experiments have measured E vs. k for a single hole propagating in antiferromagnetically aligned Sr2CuO2Cl2. Comparisons with (i) the t - t′ - J model, for which the carrier is a spinless vacancy, and (ii) a strong-coupling version of the three-band Emery model, for which the carrier is a S = 1/2 hole moving on the Oxygen sublattice, have demonstrated that if one wishes to describe the quasiparticle throughout the entire first Brillouin zone the three-band model is superior. Here we present a new variational wave function for a single Oxygen hole in the three-band model: it utilizes a classical representation of the antiferromagnetically ordered Cuspin background but explicitly includes the quantum fluctuations of the lowest energy doublet of the Cu-O-Cu bond containing the Oxygen hole. We find that this wave function leads to a quasiparticle dispersion for physical exchange and hopping parameters that is in excellent agreement with the measured ARPES data. We also obtain the average spin of the Oxygen hole, and thus deduce that this spin is only quenched to zero at certain wave vectors, helping to explain the inadequacy of the t - t′ - J model to match the experimentally observed dispersion relation everywhere in the first Brillouin zone.  相似文献   

3.
4.
5.
We have investigated the validity of doping with a vacancy the J1J3 frustrated Heisenberg model on a finite square lattice as a way to test the existence of fractional spin excitations. Using a generalized tJ1J3 model we have computed the vacancy spectral functions in the self-consistent Born approximation. We have found that by including spiral fluctuations in the magnetic ground state, the spectral functions on finite systems agree very well with the unbiased exact ones. In contrast to the recent proposal that the quasiparticle weight reduction could be a signal of a spinon free excitation in finite systems, we have found strong evidence that such a reduction is due to the existence of spiral fluctuations.  相似文献   

6.
We argue that recently reported high resolution angle-resolved photoelectron spectra from cuprates, where an anomalous high-energy dispersion was identified, reveal the internal structure of the hole quasiparticle in quantum antiferromagnets and more importantly it is evidence for the existence of “string-excitations” which validate early predictions based on the tJ model. Their energy–momentum dispersion, the manner in which the spectral weight is transfered to higher energy string excitations, and the vanishing of the quasiparticle spectral weight near the Γ point, are all in agreement with predictions without adjusting any parameters.  相似文献   

7.
The dispersion spectrum of single hole in a bilayer composed of plane and chain, each described by t-J model, coupled by - interactions between them, is calculated in terms of self-consistent Born approximation. It was found that for a weak interlayer coupling the two different quasiparticle bands, plane-like and chain-like bands, show a minimum at (, ) and a maximum at (0, 0) or (, ). In plane-like dispersion we can find an anomalous “flat” region near Fermi surface along the antiferromagnetic Brillouin zone boundary, which favors the formation of the van-Hove singularities. With increasing interlayer coupling, a large modification of the dispersions is carried out, the minimum deviates from (, ) and the energy gap of the two bands decreases and finally disappears when the vertical coupling is larger enough. The shapes of the QP bands are sensitive to the vertical hopping rather than the vertical exchange energy . As the interlayer coupling increases, the shapes of the two QP bands suggest that the chain-like band approaches to that of quasi-one dimensional model, and the plane-like band undergoes the one layer t - t '-J models' band. Received 17 March 1999  相似文献   

8.
The electron Green's functions G(k, ω) within the t ? J model and in the regime of intermediate doping is studied analytically using equations of motion for projected fermionic operators and the decoupling of the self energy into the single-particle and spin fluctuations. It is shown that the assumption of marginal spin dynamics at T = 0 leads to an anomalous quasiparticle damping. Numerical results show also a pronounced asymmetry between the hole (ω < 0) and the electron (ω > 0) part of the spectral function, whereby hole-like quasiparticles are generally overdamped.  相似文献   

9.
We present a new finite-temperature quantum Monte Carlo algorithm to compute imaginary-time Green functions for a single hole in the t-J model on non-frustrated lattices. Spectral functions are obtained with the Maximum Entropy method. Simulations of the one-dimensional case show that a simple charge-spin separation Ansatz is able to describe the overall features of the spectral function such as the bandwidth and the compact support of the spectral function, over the whole energy range for values of J / t from 1/3 to 4. This is contrasted with the two-dimensional case. The quasiparticle weight Zk is computed on lattices up to L =128 sites in one dimension, and scales as . Received 15 February 2000  相似文献   

10.
The numerical diagonalization study on an extended t ? J Holstein model, including the renormalization of the hole hopping t due to the phonon effect indicates that the breathing vibration of the in-plane oxygen can enhance the hole pairing for some parameters.  相似文献   

11.
Ioffe–Larkin rule applies for the pure charge-spin separation regardless of its dimensionality. Here, an extension to this rule as a result of the coexistence of spinon, holon and electron as a single entity in the 2-dimensional (2D) system is derived, which is also in accordance with the original rule.  相似文献   

12.
The effective Hamiltonian for a realistic multiband p-d model is developed. In the case of electron doping, the Hamiltonian coincides with that for the standard t-J model. For hole doping, the singlet-triplet t-J model takes place.  相似文献   

13.
The effects of multi-impurity quantum interference on triangular lattice f-wave superconductors are studied by self-consistently solving Bogoliubov-de Gennes equations within the t?t′?J?V model. An overall phase diagram is presented, which shows that f-wave superconductivity dominates near 0.3 doping. Rich phenomena are induced by quantum interference effects, such as periodic modulations in charge orders, pyramid frustum structures, and a magnetic moment reverse transition, which are qualitatively different from the single-impurity case. We also examine the local density of states to show how localized quasiparticle states are created at or near the impurity sites, which can be directly measured by scanning tunneling microscopy experiments.  相似文献   

14.
It is argued that the dominant feature of the phase diagram of the high Tc cuprates is the crossover to the pseudogap phase in the energy (temperature) region E(T). We argue that this scale is determined by the effective anti-ferromagnetic interaction which we calculate to be Jeff=Jsuperexchangext where x is the hole percentage and t the hopping integral.  相似文献   

15.
We introduce a new mean-field approach to the tt't'J model that incorporates both electron-like quasiparticle and spinon excitations as suggested by some experiments and numerical studies. It leads to a mean-field phase diagram which is consistent with that of hole and electron doped cuprates. Moreover, it provides a framework to describe the observed evolution of the electron spectral function from the undoped insulator to the overdoped Fermi metal for both hole and electron doping. The theory also provides a new non-BCS mechanism leading to superconductivity.  相似文献   

16.
A method is developed to exactly calculate the fixedJ quasiparticle centroid energies and partial widths. Some results obtained in the even-mass lead isotopes with various interactions are analysed. FixedJ quasiparticle distributions are used to predict an upper limit for the deviations between the quasiparticle approximation and the shell model results for the low-energy levels. The influence of the states with a high quasiparticle number in the low-energy region is seen to strongly depend upon the interaction. The importance of the dimensionalities and the internal widths in explaining the admixtures is stressed.  相似文献   

17.
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic t-J Heisenberg model on the honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures and hole dopings, the electronic spectrum of excitations, the spin-excitation spectrum and thermodynamic quantities (two-spin correlation functions, staggered magnetization, magnetic susceptibility, correlation length) are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature and doping dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. Our results on the doping dependencies of the magnetization and susceptibility are analyzed in comparison with previous results for the t-J model on the square lattice.  相似文献   

18.
19.
We investigate charge dynamics in the antiferromagnetic (AF) phase of electron-doped cuprates by using numerically exact diagonalization technique for an electron-doped t-t′-J model. When AF correlation develops with decreasing temperature, a gap-like behavior emerges in the optical conductivity accompanied by the enhancement of the coherent motion of carriers due to the same sublattice hoppings. This is a remarkable contrast to the behavior of a hole-doped t-t′-J model.  相似文献   

20.
We study the binding of a holon and a spinon in the one-dimensional anisotropic t-J model using a Bethe-Salpeter equation approach, exact diagonalization, and density matrix renormalization group methods on chains of up to 128 sites. We find that holon-spinon binding changes dramatically as a function of anisotropy parameter alpha=J( perpendicular)/J(z): it evolves from an exactly deducible impuritylike result in the Ising limit to an exponentially shallow bound state near the isotropic case. A remarkable agreement between the theory and numerical results suggests that such a change is controlled by the corresponding evolution of the spinon energy spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号