首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a general theory of a boson decomposition for both local and non-local interactions in lattice fermion models which allows us to describe fermionic degrees of freedom and collective charge and spin excitations on equal footing. An efficient perturbation theory in the interaction of the fermionic and the bosonic degrees of freedom is constructed in the so-called dual variables in the path-integral formalism. This theory takes into account all local correlations of fermions and collective bosonic modes and interpolates between itinerant and localized regimes of electrons in solids. The zero-order approximation of this theory corresponds to an extended dynamical mean-field theory (EDMFT), a regular way to calculate nonlocal corrections to EDMFT is provided. It is shown that dual ladder summation gives a conserving approximation beyond EDMFT. The method is especially suitable for consideration of collective magnetic and charge excitations and allows to calculate their renormalization with respect to “bare” RPA-like characteristics. General expression for the plasmonic dispersion in correlated media is obtained. As an illustration it is shown that effective superexchange interactions in the half-filled Hubbard model can be derived within the dual-ladder approximation.  相似文献   

2.
3.
We investigate the possibility of transforming supersymmetric theories into pure;y fermionic or bosonic forms. The supersymmetric sine-Gordon lagrangian is rewritten in a purely fermionic form, and the Fermi equivalent of the original supersymmetry transformation is derived. This transformation represents an invariance only at the quantum level, when the effects of the chiral anomaly have been taken into account. When supersymmetric theories are written in purely bosonic forms, a non-local bosonic transformation takes place of the supersymmetry transformation. In both cases the supersymmetry algebra, as realized on the fields, is lost.  相似文献   

4.
Within the framework of the hard thermal loop effective theory we derive a system of Boltzmann-like kinetic equations taking into account the simplest processes of nonlinear interaction of soft fermionic and bosonic QCD plasma excitations: elastic scattering of soft-(anti)quark excitations off soft-gluon and soft-quark excitations, pair production of soft quark–antiquark excitations, annihilation into two soft-gluon excitations. The matrix elements of these processes to leading order in the coupling constant g are obtained. The iterative method of calculation of the matrix elements for the higher processes of soft-mode interactions is proposed. The most general expression for the emitted radiant power induced by the effective currents and effective sources in a quark–gluon plasma (QGP) taking into account an existence of fermion sector of plasma excitations is defined. The explicit form of the linearized Boltzmann equation accounting for scattering of color(less) plasminos off color(less) plasmons is written out.  相似文献   

5.
Systems showing resonant superfluidity, driven by an exchange coupling of strength g between uncorrelated pairs of itinerant fermions and tightly bound ones, undergo a first-order phase transition as g increases beyond some critical value gc. The superfluid phase for ggc this state gives way to a phase-uncorrelated bosonic liquid with a q2 spectrum.  相似文献   

6.
We present a new supersymmetric approach to the Kondo lattice model in order to describe simultaneously the quasiparticle excitations and the low-energy magnetic fluctuations in heavy-Fermion systems. This approach mixes the fermionic and the bosonic representation of the spin following the standard rules of superalgebra. Our results show the formation of a bosonic band within the hybridization gap reflecting the spin collective modes. The density of states at the Fermi level is strongly renormalized while the Fermi surface sum rule includes n c + 1 states. The dynamical susceptibility is made of a Fermi liquid superimposed on a localized magnetism contribution.  相似文献   

7.
We show that in the collision of two superfluid fermionic atomic clouds one observes the formation of quantum shock waves as discontinuities in the number density and collective flow velocity. Domain walls, which are topological excitations of the superfluid order parameter, are also generated and exhibit abrupt phase changes by π and slower motion than the shock waves. The domain walls are distinct from the gray soliton train or number density ripples formed in the wake of the shock waves and observed in the collisions of superfluid bosonic atomic clouds. Domain walls with opposite phase jumps appear to collide elastically.  相似文献   

8.
9.
Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (QW) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons. The oscillator strength of intersubband resonances (ISBRs) strongly varies with QW parameters and electron density because of this coupling. Using the intersubband semiconductor Bloch equations for a two-conduction-subband model, we show that intersubband absorption spectra for narrow wells are dominated by the Fermi-edge singularity (via coupling to repellons) when the electron gas becomes degenerate and in the presence of large nonparabolicity. Thus the resonance peak position appears at the Fermi edge and the peak is greatly narrowed, enhanced, and red shifted as compared to the free particle result. Our results uncover a new perspective for ISBRs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBR line shape.  相似文献   

10.
We discuss collective spin-wave excitations in triplet superconductors with an easy axis anisotropy for the order parameter. Using a microscopic model for interacting electrons, we estimate the frequency of such excitations in Bechgaard salts and ruthenate superconductors to be 1 and 20 GHz, respectively. We introduce an effective bosonic model to describe spin-wave excitations and calculate their contribution to the nuclear spin-lattice relaxation rate. We find that, in the experimentally relevant regime of temperatures, this mechanism leads to the power law scaling of 1/T1 with temperature. For two- and three-dimensional systems, the scaling exponents are 3 and 5, respectively. We discuss experimental manifestations of the spin-wave mechanism of the nuclear spin-lattice relaxation.  相似文献   

11.
By making use of the Talmi-Moshinsky transformation bracket, -the Schrödinger equation for four anyons in configuration space has been solved variationally to obtain the eigenenergies and eigenfunctions. The low-lying states have been presented as functions of the statistical parameter. We illustrated how the bosonic states evolve continuously into the fermionic states.  相似文献   

12.
We demonstrate theoretically that the collective abstraction reaction A + B2-->AB + B can be realized efficiently with degenerate bosonic or fermionic matter waves. We show that this is dominated by quantum fluctuations, which are critical in triggering its initial stages with the appearance of macroscopic nonclassical correlations of the atomic and molecular fields as a result. This study opens up a promising new regime of quantum-degenerate matter-wave chemistry.  相似文献   

13.
In this work we show that light-matter excitations (polaritons) generated inside a hollow-core one-dimensional fiber filled with two types of atoms, can exhibit Luttinger liquid behavior. We first explain how to prepare and drive this quantum-optical system to a strongly interacting regime, described by a bosonic two-component Lieb-Liniger model. Utilizing the connection between strongly interacting bosonic and fermionic systems, we then show how spin-charge separation could be observed by probing the correlations in the polaritons. This is performed by first mapping the polaritons to propagating photon pulses and then measuring the effective photonic spin and charge densities and velocities by analyzing the correlations in the emitted photon spectrum. The necessary regime of interactions is achievable with current quantum-optical technology.  相似文献   

14.
The chain mapping of structured environments is a most powerful tool for the simulation of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact simulations of open quantum systems dynamics, chain mapping provides an unique perspective on the environment: the interaction between the system and the environment creates perturbations that travel along the one dimensional environment at a finite speed, thus providing a natural notion of light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped bosonic environment. In particular, we explore the relation between the environmental spectral density shape, parameters and temperature, and the dynamics of excitations along the corresponding linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the environment evolution, such as localization, percolation and the onset of stationary currents.  相似文献   

15.
We develop an approximation-free diagrammatic Monte Carlo technique to study fermionic particles interacting with each other simultaneously through both an attractive Coulomb potential and bosonic excitations of the underlying medium. Exemplarily we apply the method to the long-standing exciton-polaron problem and present numerically exact results for the wave function, ground-state energy, binding energy and effective mass of this quasiparticle. Focusing on the electron-hole pair bound-state formation, we discuss various limiting cases of a generic exciton-polaron model. The frequently used instantaneous approximation to the retarded interaction due to the exchange of phonons is found to be of very limited applicability.  相似文献   

16.
In a metal, a magnetic impurity is fully screened by the conduction electrons at low temperature. In contrast, impurity moments coupled to spin-1 bulk bosons, such as triplet excitations in paramagnets, are only partially screened, even at the bulk quantum critical point. We argue that this difference is not due to the quantum statistics of the host particles but instead related to the structure of the impurity-host coupling, by demonstrating that frustrated magnets with bosonic spinon excitations can display a bosonic version of the Kondo effect. However, the Bose statistics of the bulk implies distinct behavior, such as a weak-coupling impurity quantum phase transition, and perfect screening for a range of impurity spin values. We discuss implications of our results for the compound Cs2CuCl4, as well as possible extensions to multicomponent bosonic gases.  相似文献   

17.
Instantons in the simplest supersymmetric Yang-Mills theory are considered. We introduce bosonic and fermionic collective coordinates and study how they change under the supersymmetry transformations. The instanton measure is shown to be explicitly invariant under the transformations. We discuss the relation between quantum anomalies and the functional form of the instanton measure.  相似文献   

18.
We consider a prototypical system of an infinite range transverse field Ising model coupled to a bosonic bath. By integrating out the bosonic degrees, an effective anisotropic Heisenberg model is obtained for the spin system. The phase diagram of the latter is calculated as a function of coupling to the heat bath and the transverse magnetic field. Collective excitations at low temperatures are assessed within a spin-wave like analysis that exhibits a vanishing energy gap at the quantum critical point. We also discuss the possible realization and application of the model in different physical systems.  相似文献   

19.
The extension to the massive case of fermionic excitations in a QED/QCD plasma at high temperature is studied in detail. Calculations for light massive fermions are performed over the whole range of the three-momentum. Analytical and numerical results show that the collective mode is no longer significant form>gT, whereas the usual particle excitation evolves rapidly to a free-particle state.  相似文献   

20.
Using an exact Bethe ansatz solution, we rigorously study excitation spectra of the spin-1/2 Fermi gas (called Yang–Gaudin model) with an attractive interaction. Elementary excitations of this model involve particle-hole excitation, hole excitation and adding particles in the Fermi seas of pairs and unpaired fermions. The gapped magnon excitations in the spin sector show a ferromagnetic coupling to the Fermi sea of the single fermions. By numerically and analytically solving the Bethe ansatz equations and the thermodynamic Bethe ansatz equations of this model, we obtain excitation energies for various polarizations in the phase of the Fulde–Ferrell–Larkin–Ovchinnikov-like state. For a small momentum (long-wavelength limit) and in the strong interaction regime, we analytically obtained their linear dispersions with curvature corrections, effective masses as well as velocities in particle-hole excitations of pairs and unpaired fermions. Such a type of particle-hole excitations display a novel separation of collective motions of bosonic modes within paired and unpaired fermions. Finally, we also discuss magnon excitations in the spin sector and the application of Bragg spectroscopy for testing such separated charge excitation modes of pairs and single fermions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号