首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantitative assessment of lactic acid in tissue is an important goal for in vivo volume-selective NMR spectroscopy to aid in the noninvasive diagnosis of oxygen deficiency or other metabolic disorders. PRESS localized 1H spectra provide comparatively high signal-to-noise ratio from small volume elements in a single acquisition mode. The quantification of lactate after multipulse excitation is not trivial due to the J-coupling characteristics which do not occur for the substances serving as references. The influence of the timing scheme and of the quality of the refocusing pulses was systematically evaluated for the lactate resonances by volume-selective measurements. Gaussian pulses, Hanning-filtered sinc pulses, and numerically optimized RE-BURP-pulses were applied for refocusing the magnetization in the PRESS sequence and the effects on the lactate AX3 spin system were compared. For these pulses, sequence parameters are presented providing high sensitivity to lactate signals. Timing schemes are shown which provide good quantification of lactate, even in cases with B1-inhomogeneities or slight misadjustment of the transmitter amplitude. The combination of both echo times in the double-echo sequences clearly influences the signal characteristics of lactate at overall echo times near TE = 145 and 290 ms, which may result in pure in-phase magnetization for this weakly coupled homonuclear system. Numerically optimized refocusing pulses (RE-BURP) provided up to 50% higher signal ratio of the methyl protons of lactate to uncoupled nuclei than the often used Hanning-filtered sinc pulses.  相似文献   

2.
Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42 ± 24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.  相似文献   

3.
Localized (1)H NMR spectroscopy using the 90 degrees -t(1)-180 degrees -t(1)+t(2)-180 degrees -t(2)-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t(1) and t(2). The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t(1)=t(2)) at an echo time of 2/J (approximately 290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX(3) spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3,..., we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

4.
Volume-selective lactate editing has been performed successfully in vitro and in vivo in the brain on a clinical scanner using a PRESS-based single voxel 1H spectroscopy and a 1H spectroscopic imaging sequence. The PRESS sequence was made sensitive to homonuclear polarisation by replacing the standard 180° refocusing pulses with 90° pulses. Two acquisitions were made at a total echo time around 2/J (J is the coupling constant for CH and CH3 spins in lactate ≈7 Hz) whose individual echo times differed by 5.5 ms. Subtraction of one signal from the other yielded the lactate resonance alone. The technique is an effective method of separating the overlapping signals of lactate and lipids. Furthermore this editing method can be performed without state of the art MRI scanner hardware.  相似文献   

5.
Macromolecules contribute broad "background" resonances to the (1)H NMR brain spectra at short echo times. The application of long echo times is the most widely used method for removing these resonances. Here, it is demonstrated that these background resonances may be suppressed at short echo times using multiple inversion recovery (MIR). In the technique presented, the MIR sequence consists of four adiabatic inversion pulses, applied preparatory to a 20-ms echo time stimulated echo localization sequence. The inversion times (359, 157, 69, and 20 ms) were selected to preferentially suppress macromolecules with longitudinal relaxation times between 38 and 300 ms. While the resulting spectra have lower overall signal-to-noise, baseline contributions from macromolecules are greatly reduced. Unlike the typical long TE acquisitions, the short TE MIR acquisition preserves the myo-inositol resonance.  相似文献   

6.
There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.  相似文献   

7.
Twenty-seven patients with soft-tissue tumors were examined with a Picker 0.15-tesla resistive magnet and by computed tomography (CT). In all but one patient, MRI was better than or equal to CT in defining the anatomic extent of the tumor. We could determine whether major vascular structures were engulfed by the tumor in 80% of the MRI examinations but only in 62% of the CT scans. MRI and CT were equally effective in determining the presence or absence of bony invasion. The MRI images of all the tumors showed increased signal intensity relative to normal muscle when spin-echo (SE) sulse sequences with long repeat times were used (SE: echo time [TE], 60 ms; repetition time [TR], 2,000 ms). When T1 weighted pulse sequences were used (SE: TE, 30 ms; TR, 500 ms or inversion recovery: inversion time, 500 ms; TE, 40 ms; TR, 2,000 ms) the malignant tumors showed decreased signal intensity compared to normal muscle. Only lipomas showed high signal intensity on both T1 and T2 weighted pulse sequences.  相似文献   

8.
A PRESS (Point RESolved Spectroscopy) sequence for the improved detection of the C2 protons of Glx (glutamate and glutamine) at approximately 3.75ppm is presented in this work. It is shown that for spins like the C2 protons of Glx which are involved solely in weak coupling interactions, the chemical shift displacement effect can be turned to advantage by exploiting PRESS refocusing pulses with bandwidths less than the chemical shift difference between the target spins and the spins to which they are weakly coupled. The narrow-bandwidth PRESS sequence allows refocusing of the J-coupling evolution of the target protons in the voxel of interest independently of echo time yielding signal equivalent to that which can be obtained with a one-pulse acquire sequence (assuming ideal pulses and ignoring T2 relaxation). The total echo time of PRESS was set long enough for the decay of macromolecule signal and the two echo times were empirically optimized so that the Glx signal at 3.75ppm suffered minimal contamination from myo-inositol. The efficacy of the method was verified on phantom solutions of Glx and on brain in vivo.  相似文献   

9.
Significant improvements in spin-echo MRS are possible when voxel localisation is performed using high bandwidth frequency offset corrected inversion (FOCI) pulses as opposed to more conventional lower bandwidth pulses. The reduced chemical shift displacement errors result in a spectrum that more accurately reflects the actual metabolite distribution within any region of interest that is selected graphically on a series of scout images, and can lead to improved metabolite detection in the case of homonuclear J-coupled spins. At 4.7T, FOCI pulses with a 20 kHz bandwidth result in extremely sharp and uniform selection profiles, and negligible contamination from outside of the voxel of interest, for all signals in the 1H spectral range that is normally studied. A 'FOCI' adiabatic half-passage is observed to provide good excitation over the 1H spectral range. Single shot performance with echo-time (TE)48 ms is reported using a four-port drive birdcage head coil. GAMMA simulations show that, for many detectable metabolites at 4.7 T, LASER localisation using FOCI pulses with TE=48 ms results in 1H anti-phase spectral components that are the same order as would be obtained from a symmetric PRESS sequence with TE=32 ms. Timing schemes are proposed to enable good measurement of lactate with very little signal loss arising from chemical shift displacement errors at TE=144 and 288 ms.  相似文献   

10.
The radiofrequency pulses used in NMR are subject to a number of imperfections such as those caused by inhomogeneity of the radiofrequency (B(1)) field and an offset of the transmitter frequency from precise resonance. The effect of these pulse imperfections upon a refocusing pulse in a spin-echo experiment can be severe. Many of the worst effects, those that distort the phase of the spin echo, can be removed completely by selecting the echo coherence pathway using either the "Exorcycle" phase cycle or magnetic field gradients. It is then tempting to go further and try to improve the amplitude of the spin-echo signal by replacing the simple refocusing pulse with a broadband composite 180° pulse that compensates for the relevant pulse imperfection. We show here that all composite pulses with a symmetric or asymmetric phase shift scheme will reintroduce phase distortions into the spin echo, despite the selection of the echo coherence pathway. In contrast, all antisymmetric composite pulses yield no phase distortion whatsoever, both on and off resonance, and are therefore the correct symmetry of composite refocusing pulse to use. These conclusions are verified using simulations and (31)P MAS NMR spin-echo experiments performed on a microporous aluminophosphate.  相似文献   

11.
Localized 1H NMR spectroscopy using the 90°−t1−180°−t1+t2−180°−t2−Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

12.
PurposeNormal adult cortical bone has a very short T2 and characteristically produces no signal with pulse sequence echo times (TEs) routinely used in clinical practice. We wished to determine whether it was possible to use ultrashort TE (UTE) pulse sequences to detect signal from cortical bone in human subjects and use this signal to characterise this tissue.Subjects and MethodsSeven volunteers and 10 patients were examined using ultrashort TE pulse sequences (TE=0.07 or 0.08 ms). Short and long inversion as well as fat suppression pulses were used as preparation pulses. Later echo images were also obtained as well as difference images produced by subtracting a later echo image from a first echo image. Saturation pulses were used for T1 measurement and sequences with progressively increasing TEs for T2* measurement. Intravenous gadodiamide was administered to four subjects.ResultsSignal in cortical bone was detected with UTE sequences in children, normal adults and patients. This signal was usually made more obvious by subtracting a later echo image from the first provided that the signal-to-noise ratio was sufficiently high.Normal mean adult T1s ranged from 140 to 260 ms, and mean T2*s ranged from 0.42 to 0.50 ms. T1 increased significantly with age (P<.01).Increased signal was observed after contrast enhancement in the normal volunteer and the three patients to whom it was administered.Reduction in signal from short T2 components was seen in acute fractures, and increase in signal in these components was seen with new bone formation after fracture malunion. In a case of osteoporosis, bone cross-sectional area and signal level appeared reduced.ConclusionSignal can be detected from normal and abnormal cortical bone with UTE pulse sequences, and this can be used to measure its T1 and T2* as well as observe contrast enhancement. Difference images are of value in increasing the conspicuity of cortical bone and observing abnormalities in disease.  相似文献   

13.
Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B?-homogeneous sensitive volume of the RF coil.  相似文献   

14.
The purpose of this study was to prospectively assess two breath-hold T(2)-weighted fast spin-echo sequences and two breath-hold inversion recovery fast spin-echo sequences to determine their relative ability to detect and characterize focal hepatic lesions. Fourteen patients with a total of nineteen proven focal hepatic lesions were imaged with two breath-hold T(2)-weighted (T2W) fast spin echo sequences (HASTE TE = 66 and HASTE TE = 120), two breath-hold inversion recovery fast spin echo sequences (IRFSE TE = 64 and IRFSE TE = 95), and a nonbreath-hold T(2)-weighted fast-spin echo sequence (FSE TE = 96-120). Contrast-to-noise ratios (CNRs) were measured for all proven lesions on all sequences. Both IRFSE sequences and the HASTE sequence with TE = 66 showed an improvement in lesion-liver and liver-spleen CNRs compared to the nonbreath-hold T2W sequence. The mean difference in CNR between benign and malignant lesions was largest for the HASTE TE = 120 sequence. These preliminary results suggest that a breath-hold IRFSE sequence (TE = 64 or 95) has an equal ability to detect focal hepatic lesions as a nonbreath-hold T2W FSE sequence (TE = 96-120). The HASTE TE = 120 showed the greatest ability to discriminate between benign and malignant lesions.  相似文献   

15.
It has been observed recently that the finite duration of refocusing rf pulses in a multiecho acquisition of the signal formed under the influence of the dipolar field leads to significant signal attenuation [S. Kennedy, Z. Chen, C.K. Wong, E.W.-C. Kwok, J. Zhong, Investigation of multiple-echo spin-echo signal acquisition under distant dipole-dipole interactions, Proc. Int. Soc. Magn. Reson. Med. 13 (2005) 2288]. Hereto, we quantify the phenomenon by evaluating analytically the influences of both the distant dipolar field (DDF) and transverse relaxation T2 on the magnetization in a multiecho pulse sequence based on correlation spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED). Analytic expressions for the magnetization were obtained, which demonstrate explicitly the origin of rephased signal in the presence of the finite pi pulses in the multiecho train. The expressions also explain the effects of the DDF and T2 during the refocusing pulses on the signal strength, and show the substantial signal dependence on the phase of the rf pulses. We show that when the DDF effect during the pulse is canceled, the signal rises primarily during the free evolution time in the acquisition period. This elucidates the signal attenuation when the rf pulses cover a significant proportion of time in the sequence. In addition, we performed an optimization on the number of refocusing pulses that maximizes the total acquired signal using parameters for water, brain white matter, and muscle. We found that maximal signal-to-noise ratio is obtained when the pulse duration approximately equals the free evolution time in the samples with a wide range of T2.  相似文献   

16.
A study was undertaken to assess the use of excitation flip angles greater than 90° for T1 weighted spin-echo (SE) imaging with a single 180° refocusing pulse and short TR values. Theoretical predictions of signal intensity for SE images with excitation pulse angles of 90–180° were calculated based on the Bloch equations and then measured experimentally from MR images of MnCl2 phantoms of various concentrations. Liver signal-to-noise ratios (SNR) and liver-spleen contrast-to-noise ratios (CNR) were measured from breathhold MR images of the upper abdomen in 16 patients using 90 and 110° excitation flip angles. The theoretical predictions showed significant improvements in SNR with excitation flip angles >90°, which were more pronounced at small TR values. The phantom studies showed reasonably good agreement with the theoretical predictions in correlating the excitation pulse angle with signal intensity. In the human imaging studies, the 110° excitation pulse angle resulted in a 7.4% (p < .01) increase in liver SNR and an 8.2% (p = .2) increase in liver-spleen CNR compared to the 90° pulse angle at TR = 275 ms. Increased signal intensity resulting from the use of large flip angle excitation pulses with a single echo SE pulse sequence was predicted and confirmed experimentally in phantoms and humans.  相似文献   

17.
In clinical MR spectroscopy, double spin-echo point resolved spectroscopy (PRESS) sequences are routinely used for volume selection. For strongly coupled AB spin systems under PRESS excitation, the dependence of the signal on the echo time TE has been thoroughly investigated, whereas less attention has been paid to the signal modulation which occurs at constant TE with varying interpulse delays. A substantial TE-independent J modulation is here predicted from analytical solutions of the Liouville equation and density matrix simulations, and verified with experiments on citrate at 1.5 and 3T. It is also shown that this modulation effect could be exploited for editing of strongly coupled AB resonances or for removal of singlets in spectra-by means of difference spectroscopy-just using a standard PRESS sequence. The applicability in vivo of this new spectral editing approach is also demonstrated, with selective detection of citrate resonances in the human prostate. This novel approach has the advantages of being simple, and directly applicable on standard clinical MR scanners, provided that the exact behavior of the resonance is known.  相似文献   

18.
The tissue distribution of perfluorooctanoic acid (PFOA), which is known to show unique biological responses, has been visualized in female mice by (19)F magnetic resonance imaging (MRI) incorporated with the recent advances in microimaging technique. The chemical shift selected fast spin-echo method was applied to acquire in vivo (19)F MR images of PFOA. The in vivo T(1) and T(2) relaxation times of PFOA were proven to be extremely short, which were 140 (+/- 20) ms and 6.3 (+/- 2.2) ms, respectively. To acquire the in vivo (19)F MR images of PFOA, it was necessary to optimize the parameters of signal selection and echo train length. The chemical shift selection was effectively performed by using the (19)F NMR signal of CF(3) group of PFOA without the signal overlapping because the chemical shift difference between the CF(3) and neighbor signals reaches to 14 kHz. The most optimal echo train length to obtain (19)F images efficiently was determined so that the maximum echo time (TE) value in the fast spin-echo sequence was comparable to the in vivo T(2) value. By optimizing these parameters, the in vivo (19)F MR image of PFOA was enabled to obtain efficiently in 12 minutes. As a result, the time course of the accumulation of PFOA into the mouse liver was clearly pursued in the (19)F MR images. Thus, it was concluded that the (19)F MRI becomes the effective method toward the future pharmacological and toxicological studies of perfluorocarboxilic acids.  相似文献   

19.
In a single-voxel stimulated echo localization sequence in magnetic resonance spectroscopy, magnetic field gradients are inserted within the echo time (TE) to filter signals generated through coherence pathways other than that leading to the stimulated echo. There is a significant penalty for these gradients as they increase the minimum TE, thereby leading to significant signal loss from spin-spin relaxation and phase distortions in coupled spin systems. Here, an RF phase rotation technique is described for a stimulated echo localization sequence that allows removal of the gradients in the TE intervals and, subsequently, reduction of the minimum TE to only 6 ms. Experiments carried out on six healthy volunteers on a 1.5-T whole-body MR system show a significant signal increase in the metabolite concentrations when measured with a 6-ms TE (N-acetyl-aspartate, 12%, P=.002; creatine, 15%, P=.04; and glutamate+glutamine, 92%, P=.02) compared to concentrations measured with data collected at TEs of 15 and 20 ms.  相似文献   

20.
In this study, in order to differentiate cavernous hemangioma and hepatic metastases, rapid acquisition relaxation enhanced (RARE) sequence was used. First, in vivo measurements of T1, T2 relaxation times and proton density were obtained using T1, T2 calculation protocol (TOMIKON S50, 0.5T) and multipoint techniques. These measurements were made from regions of interest placed over the liver, spleen (because of similarity of relaxation time values between hepatic metastases and spleen) and cavernous hemangioma (HCH). Based on these intrinsic parameters, T2 curves signal intensity of three different tissues were constructed. At TE = 500 ms, the signal intensity of the liver and spleen has been near zero whereas in HCH, the signal intensity remained. As RARE sequence is very similar to spin echo (SE), by replacing effective TE(ETE) = 500 ms in the RARE equation, two dimensional contrast-to-noise ratio (CNR) contour plots were constructed demonstrating signal intensity contrast between liver-spleen, liver-Hemangioma for two different scan times (3 min, 7.5 s) and pulse timing. Then, optimal RARE factor and inter echo times were obtained in order to have maximum CNR between liver-Hemangioma and minimum CNR between liver-spleen. These optimal parameters were performed on ten normal and five persons with known HCH. Images showed that in both scan times (3 min, 7.5 s); the liver and spleen were suppressed whereas the HCH was enhanced. The image quality in the scan time of 3 min was better than the scan time of 7.5 s. Moreover, in this study, two different sequences were compared: i) Multi-slice single echo (MSSE) for T1 weighted image ii) RARE (ETE = 80 ms) for T2-weighted image. This comparison was done to show maximum CNR between liver-spleen (metastases) and to choose a better sequence for detecting metastases. CNR in the RARE sequence was more than in the MSSE sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号