首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The weak disorder expansion of Lyapunov exponents of products of random matrices is derived by a new method. Our treatment can be easily generalized to the problem when in the limit of zero randomness two eigenvalues of the matrices are equal. For real degenerate matrices, the formula for the leading term of the Lyapunov exponent is derived. It has the form of a continuous fraction, which converges quickly to the exact value.  相似文献   

2.
To every product of 2×2 matrices, there corresponds a one-dimensional Schrödinger equation whose potential consists of generalised point scatterers. Products of random matrices are obtained by making these interactions and their positions random. We exhibit a simple one-dimensional quantum model corresponding to the most general product of matrices in SL(2,?). We use this correspondence to find new examples of products of random matrices for which the invariant measure can be expressed in simple analytical terms.  相似文献   

3.
We prove the Law of Large Numbers and the Central Limit Theorem for analogs of U- and V- (von Mises) statistics of eigenvalues of random matrices as their size tends to infinity. We show first that for a certain class of test functions (kernels), determining the statistics, the validity of these limiting laws reduces to the validity of analogous facts for certain linear eigenvalue statistics. We then check the conditions of the reduction statements for several most known ensembles of random matrices. The reduction phenomenon is well known in statistics, dealing with i.i.d. random variables. It is of interest that an analogous phenomenon is also the case for random matrices, whose eigenvalues are strongly dependent even if the entries of matrices are independent.  相似文献   

4.
The relation between random normal matrices and conformal mappings discovered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to have spectrum in a bounded set. It is shown that for a suitable class of potentials the asymptotic density of eigenvalues is uniform with support in the interior domain of a simple smooth curve.  相似文献   

5.
A single sandpile model with quenched random toppling matrices captures the crucial features of different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the multiscaling Bak-Tang-Wiesenfeld universality class. In the asymmetric case the simple scaling of the Manna model is observed. The presence or absence of a precise toppling balance between the amount of sand released by a toppling site and the total quantity the same site receives when all its neighbors topple once determines the appropriate universality class.  相似文献   

6.
We prove almost-sure exponential localization of all the eigenfunctions and nondegeneracy of the spectrum for random discrete Schrödinger operators on one- and quasi-one-dimensional lattices. This paper provides a much simpler proof of these results than previous approaches and extends to a much wider class of systems; we remark in particular that the singular continuous spectrum observed in some quasiperiodic systems disappears under arbitrarily small local perturbations of the potential. Our results allow us to prove that, e.g., for strong disorder, the smallest positive Lyapunov exponent of some products of random matrices does not vanish as the size of the matrices increases to infinity.  相似文献   

7.
We study the singular values of the product of two coupled rectangular random matrices as a determinantal point process. Each of the two factors is given by a parameter dependent linear combination of two independent, complex Gaussian random matrices, which is equivalent to a coupling of the two factors via an Itzykson-Zuber term. We prove that the squared singular values of such a product form a biorthogonal ensemble and establish its exact solvability. The parameter dependence allows us to interpolate between the singular value statistics of the Laguerre ensemble and that of the product of two independent complex Ginibre ensembles which are both known. We give exact formulae for the correlation kernel in terms of a complex double contour integral, suitable for the subsequent asymptotic analysis. In particular, we derive a Christoffel–Darboux type formula for the correlation kernel, based on a five term recurrence relation for our biorthogonal functions. It enables us to find its scaling limit at the origin representing a hard edge. The resulting limiting kernel coincides with the universal Meijer G-kernel found by several authors in different ensembles. We show that the central limit theorem holds for the linear statistics of the singular values and give the limiting variance explicitly.  相似文献   

8.
《Nuclear Physics B》1995,441(3):409-420
We study a new class of matrix models, formulated on a lattice. On each site are N states with random energies governed by a gaussian random matrix hamiltonian. The states on different sites are coupled randomly. We calculate the density of and correlation between the eigenvalues of the total hamiltonian in the large-N limit. We find that this correlation exhibits the same type of universal behavior we discovered recently. Several derivations of this result are given. This class of random matrices allows us to model the transition between the “localized” and “extended” regimes within the limited context of random matrix theory.  相似文献   

9.
Analyticity and other properties of the largest or smallest Lyapunov exponent of a product of real matrices with a “cone property” are studied as functions of the matrices entries, as long as they vary without destroying the cone property. The result is applied to stability directions, Lyapunov coefficients and Lyapunov exponents of a class of products of random matrices and to dynamical systems. The results are not new and the method is the main point of this work: it is is based on the classical theory of the Mayer series in Statistical Mechanics of rarefied gases.  相似文献   

10.
V.A. Avetisov  A.B. Shkarin 《Physica A》2010,389(24):5895-5902
The distribution of motifs in random hierarchical topological networks defined by nonsymmetric random block-hierarchical adjacency matrices, is constructed for the first time. According to the classification of U. Alon et al. of network superfamilies (Milo et al., 2004 [11]) by their motifs distributions, our artificial directed random hierarchical networks fall into the superfamily of natural networks to which the neuron networks belong. This is the first example of a class of “handmade” topological networks with the motifs distribution as in a special class of natural networks of essential biological importance.  相似文献   

11.
We present a version of the 1/n-expansion for random matrix ensembles known as matrix models. The case where the support of the density of states of an ensemble consists of one interval and the case where the density of states is even and its support consists of two symmetric intervals is treated. In these cases we construct the expansion scheme for the Jacobi matrix determining a large class of expectations of symmetric functions of eigenvalues of random matrices, prove the asymptotic character of the scheme and give an explicit form of the first two terms. This allows us, in particular, to clarify certain theoretical physics results on the variance of the normalized traces of the resolvent of random matrices. We also find the asymptotic form of several related objects, such as smoothed squares of certain orthogonal polynomials, the normalized trace and the matrix elements of the resolvent of the Jacobi matrices, etc. Received: 9 November 2000 / Accepted: 26 July 2001  相似文献   

12.
We study the effect of random porous matrices on the isotropic-nematic phase transition. Sufficiently close to the cleaning temperature, both random field and thermal fluctuations are important as disordering agents. A novel random field fixed point of the renormalization group equation was found that controls the transition from isotropic to the replica symmetric phase. Explicit evaluation of the exponents in d = 6 ? ε dimensions yields to a dimensional reduction and three-exponent scaling.  相似文献   

13.
A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum.  相似文献   

14.
One can identify a tripartite classification of random matrix ensembles into geometrical universality classes corresponding to the plane, the sphere and the anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the anti-sphere with truncations of unitary matrices. This paper focusses on an ensemble corresponding to the sphere: matrices of the form Y=A ?1 B, where A and B are independent N×N matrices with iid standard Gaussian real quaternion entries. By applying techniques similar to those used for the analogous complex and real spherical ensembles, the eigenvalue joint probability density function and correlation functions are calculated. This completes the exploration of spherical matrices using the traditional Dyson indices β=1,2,4. We find that the eigenvalue density (after stereographic projection onto the sphere) has a depletion of eigenvalues along a ring corresponding to the real axis, with reflective symmetry about this ring. However, in the limit of large matrix dimension, this eigenvalue density approaches that of the corresponding complex ensemble, a density which is uniform on the sphere. This result is in keeping with the spherical law (analogous to the circular law for iid matrices), which states that for matrices having the spherical structure Y=A ?1 B, where A and B are independent, iid matrices the (stereographically projected) eigenvalue density tends to uniformity on the sphere.  相似文献   

15.
Universal limits for the eigenvalue correlation functions in the bulk of the spectrum are shown for a class of nondeterminantal random matrices known as the fixed trace or the Hilbert-Schmidt ensemble. These universal limits have been proved before for determinantal Hermitian matrix ensembles and for some special classes of the Wigner random matrices. Research supported by Sonderforschungsbereich 701 “Spektrale Strukturen und Topologische Methoden in der Mathematik”. Research supported by Sonderforschungsbereich 701 “Spektrale Strukturen und Topologische Methoden in der Mathematik,” and grants RFBR-05-01-00911, DFG-RFBR-04-01-04000, and NS-638.2008.1.  相似文献   

16.
《Nuclear Physics B》2004,683(3):467-507
Exact microscopic spectral correlation functions are derived by means of the replica limit of the Toda lattice equation. We consider both Hermitian and non-Hermitian theories in the Wigner–Dyson universality class (class A) and in the chiral universality class (class AIII). In the Hermitian case we rederive two-point correlation functions for class A and class AIII as well as several one-point correlation functions in class AIII. In the non-Hermitian case the average spectral density of non-Hermitian complex random matrices in the weak non-Hermiticity limit is obtained directly from the replica limit of the Toda lattice equation. In the case of class A, this result describes the spectral density of a disordered system in a constant imaginary vector potential (the Hatano–Nelson model) which is known from earlier work. New results are obtained for the average spectral density in the weak non-Hermiticity limit of a quenched chiral random matrix model at non-zero chemical potential. These results apply to the ergodic or ϵ domain of the quenched QCD partition function at non-zero chemical potential. Our results have been checked against numerical results obtained from a large ensemble of random matrices. The spectral density obtained is different from the result derived by Akemann for a closely related model, which is given by the leading order asymptotic expansion of our result. In all cases, the replica limit of the Toda lattice equation explains the factorization of spectral one- and two-point functions into a product of a bosonic (non-compact integral) and a fermionic (compact integral) partition function. We conclude that the fermionic partition functions, the bosonic partition functions and the supersymmetric partition function are all part of a single integrable hierarchy. This is the reason that it is possible to obtain the supersymmetric partition function, and its derivatives, from the replica limit of the Toda lattice equation.  相似文献   

17.
The existence of a thermodynamic limit of the distribution of Liapunov exponents is numerically verified in a large class of symplectic models, ranging from Hamiltonian flows to maps and products of random matrices. In the highly chaotic regime this distribution is approximately model-independent. Near an integrable limit only a few exponents give a relevant contribution to the Kolmogorov-Sinai entropy.  相似文献   

18.
Random contractions (subunitary random matrices) appear naturally when considering quantized chaotic maps within a general theory of open linear stationary systems with discrete time. We analyze statistical properties of complex eigenvalues of generic N × N random matrices  of such a type, corresponding to systems with broken time reversal invariance. Deviations from unitarity are characterized by rank MN and a set of eigenvalues 0<T i≤1, i=1,..., M of the matrix $\hat T = \hat 1 - \hat A^\dag \hat A$ . We solve the problem completely by deriving the joint probability density of N complex eigenvalues and calculating all n-point correlation functions. In the limit N?M, n, the correlation functions acquire the universal form found earlier for weakly non-Hermitian random matrices.  相似文献   

19.
 This paper is devoted to the spectral properties of a class of unitary operators with a matrix representation displaying a band structure. Such band matrices appear as monodromy operators in the study of certain quantum dynamical systems. These doubly infinite matrices essentially depend on an infinite sequence of phases which govern their spectral properties. We prove the spectrum is purely singular for random phases and purely absolutely continuous in case they provide the doubly infinite matrix with a periodic structure in the diagonal direction. We also study some properties of the singular spectrum of such matrices considered as infinite in one direction only. Received: 29 April 2002 / Accepted: 7 August 2002 Published online: 20 January 2003 Communicated by B. Simon  相似文献   

20.
Recently, a new approach, called a non-parametric model of random uncertainties, has been introduced for modelling random uncertainties in linear and non-linear elastodynamics in the low-frequency range. This non-parametric approach differs from the parametric methods for random uncertainties modelling and has been developed in introducing a new ensemble of random matrices constituted of symmetric positive-definite real random matrices. This ensemble differs from the Gaussian orthogonal ensemble (GOE) and from the other known ensembles of the random matrix theory. The present paper has three main objectives. The first one is to study the statistics of the random eigenvalues of random matrices belonging to this new ensemble and to compare with the GOE. The second one is to compare this new ensemble of random matrices with the GOE in the context of the non-parametric approach of random uncertainties in structural dynamics for the low-frequency range. The last objective is to give a new validation for the non-parametric model of random uncertainties in structural dynamics in comparing, in the low-frequency range, the dynamical response of a simple system having random uncertainties modelled by the parametric and the non-parametric methods. These three objectives will allow us to conclude about the validity of the different theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号