首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Ionics》1988,26(3):209-215
1H NMR spin-lattice relaxation times, T1 (Zeeman) and T (rotating frame) and spin-spin relaxation times, T2, and 31P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200–323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed.  相似文献   

2.
Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.  相似文献   

3.
The 31P-NMR experiments in YP and YPO4 as 2-qubits quantum computers were performed at room temperature under magnetic fields of 6.3 and 11.75 T with a coherent type pulsed FT-NMR spectrometer. The full width at half of the maximum intensity of NMR spectrum for 31P is compared with the second moment caused by the dipolar field. The obtained spin–lattice relaxation times T1 of 1.2 and 320 s for the P nuclei in YP and YPO4, respectively, suggest both compounds have the advantage of increasing the numbers of quantum computing operations.  相似文献   

4.
The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin–lattice relaxation times T in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.  相似文献   

5.
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed using the untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.  相似文献   

6.
W-band (95 GHz) pulsed electron nuclear double resonance (ENDOR) measurements were carried out to determine quantitatively the first coordination shell of Mn2+ with ADP and ATPγS. The intensity of the ENDOR effect was used for counting the number of equivalent phosphate oxygens and water ligands. Titration curves for determining the binding constant of Mn2+. ADP were obtained using the intensity of the X-band EPR spectrum and the31P ENDOR effect. Both curves gave the same binding constant showing that phosphate ligand counting is plausible, provided that an appropriate reference is available. The comparison of the31P ENDOR effect of the 1:1 ADP and ATPγS complexes shows that two phosphates are coordinated in both; while in ADP they are equivalent, in ATPγS they are slightly different. The reference system for water ligand counting was Mn(H2O) 6 2+ in a H2O-D2O mixture. The results show a smaller error for the2H ENDOR effect, compared to the1H ENDOR effect. Unlike the31P ENDOR effect, the1H ENDOR effect dependence on [ADP] in the titration experiments showed that it is sensitive to variations in the zero-field splitting, which in turn alters the contributions of transitions other than the ‖?1/2>?‖1/2>. This results in a larger error in the determination of the number of water ligands.  相似文献   

7.
Magnetic resonance imaging (MRI) of teeth is an emerging application area which is still in development. Previous investigations did not fully focus on potential in vivo applications. Using 1H and 31P MRI, we obtained ex vivo microimages of teeth with a silent single point imaging (SPI) technique. 1H Images with an in-plane resolution of 310×310 μm2 were obtained. Utilizing sine-shaped gradient ramps significantly reduced the sound pressure level of the experiment to that of background noise. 1H magnetic resonance spectroscopy (MRS) was used to characterize the major components in the observed resonance. The spin–spin (T2) relaxation times of water in enamel and dentin differed by at least one order of magnitude. Three-dimensional surface reconstruction of the data allowed for complete visualization of the tooth’s surface while volume reconstruction displayed the internal geometry. PACS 82.56.Na; 83.85.Fg; 87.61.-c; 87.19.-j; 43.50.Cb  相似文献   

8.
The1H nuclear magnetic spin relaxation of water in slurry of kaolin clay was investigated in the presence of magnetite (black iron oxide, Fe3O4) at 0.2 T and room temperature. The water spectra at high magnetite contents showed two different resonances, presumably from surface-associated water and free interstitial water. The difference in observed resonance frequencies increased as much as 200 ppm with increasing magnetite content. The apparent nuclear magnetic resonance intensity decreased biexponentially as a function of magnetite added. The observedT 2* values at low magnetite contents were in accordance with the predicted values from the resonance intensities and the estimated magnetic susceptibilities. TheT 1 relaxation was multiexponential in character, so a uniform penalty program was used for the analysis of distribution. At 0.2 T for1H, kaolin slurry containing less than 5.5 ppm magnetite did not differ significantly from magnetite-free clay in the longitudinal relaxation rates of water. However, higher concentrations of magnetite produced features in theT 1 distribution significantly different from those of magnetite-free clay. TheT 2 could be approximated by monoexponential relaxation, probably because the fast-decaying components relaxed before they could be recorded. The apparent transverse relaxation ratesR 2 increased linearly as a function of magnetite content. On the basis of the comparison of spin-echo and Carr-Purcell-Meiboom-Gill data, an empirical relation was derived to describe the signal loss due to diffusion. It can be expressed by a power function of magnetite amount, which is multiplied by the sum of volume-dependent and volume-independent terms.  相似文献   

9.
The spin-lattice relaxation rates of 1H and 39K nuclei in KHSeO4 crystals were studied in the temperature range 160-400 K. The spin-lattice relaxation recovery of 1H nucleus in this crystal can be represented with a single exponential function, and the relaxation T1−1 curve of 1H can be represented with the Bloembergen-Purcell-Pound (BPP) function. The relaxation process of 39K with dominant quadrupole relaxation can be described by a linear combination of two exponential functions. T1−1 for the 39K nucleus was found to have a very strong temperature dependence, T1−1=βT7. Rapid variations in relaxation rates are associated with critical fluctuations in the electronic spin system. The T7 temperature dependence of the Raman relaxation rate is shown here to be due to phonon-magnon coupling.  相似文献   

10.
The11B and31P NMR Knight shift (K) and Korringa spin-lattice relaxation rate (1/T 1 T) have been measured for amorphous Ni81.5B18.5−x P x alloys with 0≤x≤18.5. In accordance with previous bulk measurements, the31P NMR parameters vary markedly with composition whereas the11B NMR parameters remain almost constant except for small P-contents. It is suggested that the d-band contribution toK(31P) is positive and that toK(11B) is negative. The data further support our previous conclusion that amorphous Ni81.5B18.5 is a Pauli paramagnet rather than a weak itinerant ferromagnet.  相似文献   

11.
13C and 2H spin–lattice relaxation times have been determined by inversion recovery in a range of site-specific 13C- and 2H-labeled saccharides under identical solution conditions, and the data were used to calculate deuterium nuclear quadrupolar coupling constants (2H NQCC) at specific sites within cyclic and acyclic forms in solution. 13C T1 values ranged from 0.6 to 8.2 s, and 2H T1 values ranged from 79 to 450 ms, depending on molecular structure (0.4 M sugar in 5 mM EDTA (disodium salt) in 2H2O-depleted H2O, pH 4.8, 30°C). In addition to providing new information on 13C and 2H relaxation behavior of saccharides in solution, the resulting 2H1 NQCC values reveal a dependency on anomeric configuration within aldopyranose rings, whereas 2H NQCC values at other ring sites appear less sensitive to configuration at C1. In contrast, 2H NQCC values at both anomeric and nonanomeric sites within aldofuranose rings appear to be influenced by anomeric configuration. These experimental observations were confirmed by density functional theory (DFT) calculations of 2H NQCC values in model aldopyranosyl and aldofuranosyl rings.  相似文献   

12.
The dynamics of the use of relaxation agents for 31P NMR spectroscopy were investigated. It was found that non-lability of the associated ligand is essential, in order for line broadening to be prevented. Thus, chelates were found to be most suitable. In addition, evidence was accumulated that indicates an outer sphere coordination is significant for effective reduction of spin-lattice relaxation times (T1's). Finally, the magnitude of the magnetic moment, as pertains to Gd+3 and Fe+3, was examined and related to effective reduction of T1's.  相似文献   

13.
The results of the investigations of deoxidation rate of oil-covered water obtained by measuring the 1 1H NMR spin-spin relaxation time T2 have been reported. This characteristics are related with oils quality and wear.  相似文献   

14.
The dynamics of water molecules confined in adsorbed layers of siliceous MCM-41 with a pore diameter of 2.8 nm is investigated at 230 K by deuteron nuclear magnetic resonance (NMR) relaxation studies including line shapes of theT 1 process and double quantum filtered (DQF) spectral analyses.2H DQF NMR is a particularly sensitive tool for the determination of the adsorbate dynamics resulting from residual quadrupolar interaction due to the local order. The amount of monolayer water is determined. The monolayer water is composed of two different water components characterized by water, with isotropic reorientational motions, exchanging with water displaying a solid-like spectrum with 4 kHz edge splitting. One may expect that the latter water is situated on surface sites in MCM-41. The restricted wobbling motion of the D-O bond is used to describe its dynamics which is one order of magnitude slower than the isotropic reorientational motion. The order parameter, the motional correlation time, and the exchange rate thus determined provide useful information on the structure and the adsorptive properties of the mesoporous system.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1673-1676
The nanocrystalline perovskite material Li0.15La0.28TaO3 has been synthesized by alkoxide-free Pechini type sol gel method. 7Li NMR measurements were carried out using a Bruker Avance 300 spectrometer at 116 MHz over the temperature range 150 to 400 K. Longitudinal spin-lattice relaxation times (T1) measured by saturation recovery and longitudinal relaxation times in the rotating frame (T) measured using the pulse sequence (π/2–spin lock τ acquisition) with lock radio-frequency field υ = 62.5 kHz and the T2 relaxation time measured by Hahn echo are presented. The static Hahn-echo spectra show two different lithium sites in this perovskite oxide. Further, the relaxation measurements T1 and T show two different types of lithium cations with fast and slow dynamics.  相似文献   

16.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

17.
PurposeThis work demonstrates the in vivo application of a T2 relaxation based total water content (TWC) measurement technique at 3 T in healthy human brain, and evaluates accuracy using simulations that model brain tissue. The benefit of using T2 relaxation is that it provides simultaneous measurements of myelin water fraction, which correlates to myelin content.MethodsT2 relaxation data was collected from 10 healthy human subjects with a gradient and spin echo (GRASE) sequence, along with inversion recovery for T1 mapping. Voxel-wise T2 distributions were calculated by fitting the T2 relaxation data with a non-negative least squares algorithm incorporating B1+ inhomogeneity corrections. TWC was the sum of the signals in the T2 distribution, corrected for T1 relaxation and receiver coil inhomogeneity, relative to either an external water standard or cerebrospinal fluid (CSF). Simulations were performed to determine theoretical errors in TWC.ResultsTWC values measured in healthy human brain relative to both external and CSF standards agreed with literature values. Simulations demonstrated that TWC could be measured to within 3–4% accuracy.ConclusionIn vivo TWC measurement using T2 relaxation at 3 T works well and provides a valuable tool for studying neurological diseases with both myelin and water changes.  相似文献   

18.
The spin-lattice relaxation rates for 1H and 39K nuclei in K3H(SO4)2 and KHSO4 single crystals, which are potential candidate materials for use in fuel cells, were determined as a function of temperature. The spin-lattice relaxation recovery of 1H can be represented for both crystals with a single exponential function, but cannot be represented by the Bloembergen-Purcell-Pound (BPP) function, so is not related to HSO4 motion. The recovery traces of 39K, which predominantly undergoes quadrupole relaxation, can be represented by a linear combination of two exponential functions. The temperature dependences of the relaxation rates for 39K can be described with a simple power law T1−1=αT2. The spin-lattice relaxation rates for the 39K nucleus in K3H(SO4)2 and KHSO4 crystals are in accordance with a Raman process dominated by a phonon mechanism.  相似文献   

19.
The signal-to-noise ratio and the T2 contrast in 1H NMR microscopy are strongly affected by self-diffusion effects. Here, we investigate the free diffusion of water within imaging gradients. As a result we obtain an apparent relaxation time T2 which in NMR microscopy is at least one order of magnitude smaller than the true T2 value of water in the object. This apparent T2 relaxation is considerably reduced by improving spatial resolution. We conclude that quantitative true T2 values cannot be calculated from series of images with increasing echo time. Furthermore, from the knowledge of the apparent T2, an optimum short echo time can be found in order to maximize signal-to-noise ratio. Our theoretical findings are confirmed by phantom experiments at 11.75 T field strength.  相似文献   

20.
We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin–lattice relaxation, the rotating-frame spin–lattice relaxation indicated no bulk liquid water state down to 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号