首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The usage of a variety of sorbents has been shown as promising matrix removal/preconcentration strategies for the determination of rare earth elements (REEs) in various natural water samples by inductively coupled plasma atomic emission spectrometry (ICP-AES). The sorption efficiency of various zeolites (clinoptilolite, mordenite, zeolite Y, zeolite Beta), ion-exchangers (Amberlite CG-120, Amberlite IR-120, Rexyn 101, Dowex 50W X18) and chelating resins (Muromac, Chelex 100, Amberlite IRC-718) towards REEs was investigated in terms of solution pH, shaking time and sorbent amount. The results have shown that most of the materials can take up REEs at a wide pH range. The experiments were continued with clinoptilolite, zeolite Y and Chelex 100 and it was demonstrated that all three materials displayed very fast kinetics for REE sorption (higher than 96% in 1 min). Desorption from the sorbents was realized with 2.0 M HNO3 for clinoptilolite and 0.1 M HNO3 for zeolite Y and Chelex 100. Only the lower concentration range (0.01-2.0 mg l−1) of matrix-matched standards were used in quantitation although the calibration graphs were linear at least up to 10.0 mg l−1 for all REEs studied. The limit of detection (3 s) without preconcentration was 0.1, 1.0, and 0.2 μg l−1 for Eu, La, and Yb, respectively. The validity of the method with the selected sorbents was checked through spike recovery experiments.  相似文献   

2.
《Analytical letters》2012,45(11):2105-2115
Abstract

Systematic investigations were carried out into the sorption of rare earth elements (REEs) on carbon nonofibers (CNFs) by inductively coupled plasma mass spectrometry (ICP‐MS). The experimental parameters for preconcentration of REEs, such as pH, sample flow rate and volume, eluent concentration, and interfering ions on preconcentration of REEs have been examined in detail. The studied metal ions can be adsorbed quantitatively on CNFs in a pH range from 2.0 to 5.0, and then eluted completely with 0.5 mol l?1 HNO3. Based on the above facts, a novel method using a microcolumn packed with carbon nanofibers as an adsorption material was developed for the separation and preconcentration of REEs prior to their determination by ICP‐MS. The proposed method has been successfully applied to the determination of light (La), medium (Eu and Gd) and heavy (Yb) rare earth elements in real sample with the recovery more than 90%. In order to validate this method, two certified reference materials of tea leaves (GBW 07605) and mussel (GBW 08571) were analyzed, and the determined values are in good agreement with the certified values.  相似文献   

3.
A simple method for determination of rare earth elements (REEs) by liquid–liquid–liquid microextraction (LLLME) coupled with capillary electrophoresis and ultraviolet technique was developed. In the LLLME system, 40 mmol L?1 4-benzoyl-3-methy-1-phenyl-5-pyrazolinone (PMBP) acted as extractant and 4% (v/v) formic acid was used as back-extraction solution. The parameters influencing the LLLME, including the type of the organic solvent, sample pH, formic acid concentration, PMBP concentration, extraction time, volume of organic solvent, stirring rate and phase volume ratio, were investigated. Under the optimized conditions, the detection limits (S/N = 3) of REEs were in the range of 0.19–0.70 ng mL?1. The developed method was successfully applied to the determination of trace amounts of REEs in water samples.  相似文献   

4.
A new method has been developed for the determination of trace rare earth elements (REEs) in water samples based on preconcentration with a microcolumn packed with multiwalled carbon nanotubes (MWNTs) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. The studied REEs ions can be quantitatively retained by MWNTs when the pH exceed 3.0, and then eluted completely with 1.0 mol L−1 HNO3. The detection limits of this method for REEs was between 3 and 57 ng L−1, and the relative standard deviations (RSDs) for the determination of REEs at 10 ng mL−1 level were found to be less than 6% when processing 100 mL sample solution. The method was validated using a certified reference material, and has been successfully applied for the determination of trace rare earth elements in lake water and synthetic seawater with satisfactory results.  相似文献   

5.
Lai Y  Wang Q  Yang L  Huang B 《Talanta》2006,70(1):26-31
Subcellular distribution of rare earth elements (REEs, including 14 lanthanides and yttrium) in a newly discovered REE hyperaccumulator, Pronephrium simplex (P. simplex), was determined by a chemical sequence extraction followed by ICP-MS analysis. Results showed that most REEs are associated with cell wall and proteins, and REEs concentration in the proteins, 2899.5 μg g−1, is much higher than those in the cell wall; in the chloroplast of P. simplex, REEs distribute almost equally in chloroplast membrane and thylakoid, while most REEs in the thylakoid are binding with photosystem II (PS II); a new REE-binding peptide in the lamina of P. simplex, which can accumulate REEs up to 3000 μg g−1 and has higher affinity with light REEs, was characterized, indicating that its molecular mass is 5073 Da, and may have β-sheet structure; isoelectrofocusing electrophoretic photograph indicated that it is acidic peptide with IP of 3.7. Such information should be useful for understanding of both the storage and physiological role of REEs in P. simplex and further studies on the phytoremediation of REEs contaminated environments.  相似文献   

6.
Qiang Fu  Qiuquan Wang 《Talanta》2007,72(4):1248-1254
A newly synthesized alkyl phosphinic acid resin (APAR) was used for on-line preconcentration of trace rare earth elements (REES, lanthanides including yttrium) and then determined by inductively coupled plasma mass spectrometry. REEs in seawater could be on-line concentrated on the APAR packed column (4.6 mm i.d. × 50 mm in length), and eluted from the column with 0.5 mL 0.1 mol L−1 nitric acid within 30 s. An enrichment factor of nearly 400 was achieved for all REEs when the seawater sample volume was 200 mL, while the matrix and coexisting spectrally interfering ions such as barium, tin and antimony could be simultaneously separated. The detection limits of this proposed method for REEs were in the range from 1.43 pg L−1 of holmium to 12.7 pg L−1 of lanthanum. The recoveries of REEs were higher than 97.9%, and the precision of the relative standard deviation (R.S.D., n = 6) was less than 5%. The method has been applied to the determination of soluble REEs in seawater.  相似文献   

7.
Li B  Zhang Z  Wang J  Xu C 《Talanta》2003,61(5):651-658
A novel chemiluminescence (CL) system for automatic determination of chemical oxygen demand (COD) combined with flow injection analysis is proposed in this paper. In this system, potassium permanganate is reduced to Mn2+ which is first adsorbed on a strongly acid cation-exchange resin mini-column to be concentrated during chemical oxidation of the organic compounds at room temperature, while the excessive MnO4 passes through the mini-column to be waste, then the concentrated Mn2+ is eluted reversely and measured by the luminol-H2O2 CL system. The calibration graph is linear in the range of 4-4000 mg l−1 and the detection limit is 2 mg l−1. A complete analysis could be performed in 1.5 min including washing and sampling, giving a throughout of about 40 h−1. The relative standard deviation was 4.4% for 10 mg l−1 COD (n=11), 4.8% for 100 mg l−1 COD (n=11). This CL flow system for determination of COD is very simple, rapid and suitable for automatic and continuous analysis. The presented system has been applied successfully to the determination of COD of water samples.  相似文献   

8.
A voltammetric procedure in the flow system for determination of traces of Cr(VI) in the presence of Cr(III) and humic acid is presented. The calibration graph is linear from 5×10−10 to 1×10−7 mol l−1 for an accumulation time of 120 s. The R.S.D. for 1×10−8 mol l−1 Cr(VI) is 5.3% (n=5). The detection limit estimated from 3σ for a low concentration of Cr(VI) and accumulation time of 120 s is 2×10−10 mol l−1. The method can be used for Cr(VI) determination in the presence of up to 50 mg l−1 of humic acid. The validation of the method was carried out by studying the recovery of Cr(VI) from spiked river water and by the comparison of the results of determination of Cr(VI) in a soil sample. The method cannot be used for analysis of samples containing high concentrations of chloride ions such as seawater and estuarine water.  相似文献   

9.
Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations—highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)—are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3σ) were 0.13 μg l−1 for Co and 0.18 μg l−1 for Cr in ET-AAS determination and 0.007 μg l−1 for Co and 0.002 μg l−1 for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique.  相似文献   

10.
This paper describes the coupling of sequential injection with monosegmented flow analysis (SI-MSFA) for determination of sulfide at typical concentrations in wastewaters. The method was based on the reaction of sulfide with 19 mmol l−1 Fe3+ and 3.63 mmol l−1N,N-dimethyl-p-phenylene diamine hydrochloride in medium of 1.1 mol l−1 HCl, forming the dye methylene blue. The analytical curves were constructed by in-line dilution of a single stock standard solution. The robustness of the proposed method was checked constructing analytical curves in different working days and comparing the slopes, which had a relative standard deviation of 5.2% (n=5) for a concentration range between 0.17 and 1.0 mg l−1 S2−. The analytical throughput was 38 samples per h and the limit of detection was 0.040 mg l−1. The feasibility of the SI-MSFA approach to perform standard additions for S2− determination was also described. Simulated samples spiked with known amounts of sulfide were analyzed by the proposed method, presenting recoveries between 70 and 115%. These results demonstrate the feasibility of the SI-MSFA method to perform in situ analysis of S2− in automatic monitoring stations.  相似文献   

11.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

12.
3-Amino-1,2,4-triazole (amitrole) is a widely used pesticide, with many difficulties to be analyzed at the regulatory level in drinking water, because its high solubility in water. This paper describes a simple and fast method for the simultaneous determination of amitrole and atrazin-2-hydroxy, principal degradation product of s-triazines, by capillary zone electrophoresis. Separation and determination of these herbicides in water samples was performed in 0.02 mol l−1 phosphate buffer at pH 3.2. The method allows determination of the amitrole and atrazin-2-hydroxy in water samples in concentration lower than 100 μg l−1. The detection limits using a previous preconcentration step of amitrole in Alberche River (Comunidad Autónoma de Madrid, Spain) and drinking water spiked samples was of 4 μg l−1.  相似文献   

13.
A simple and effective procedure is developed to avoid the spectral interference from light rare earth elements (REEs) and barium polyatomic ions on some rare earth elements in inductively coupled plasma mass spectrometry (ICP-MS) by combining algebraic correction with AG50W-×8 cation exchangeable chromatography. Algebraic correction is made to reduce the spectroscopic overlap interference of 141Pr16O and 143Nd16O on 157Gd and 159Tb. The spectroscopic overlap interference of BaO+ and BaOH+ on some middle REEs are overcome by separation of REEs from barium with AG50W-×8 cation exchangeable chromatography. Prior to the determination, REEs are separated from complicated matrix samples using AG50W-×8 cation exchangeable resin. Ba is eluted with 2 mol/l HNO3 solution. REEs are retained and could then be eluted with 5 mol/l HNO3 solution. Recoveries for REEs are from 96 to 110%. More than 99.5% of Ba in the sample is removed, ensuring that the spectral interference from barium polyatomic ions on some middle REEs such as Nd, Sm, Eu and Gd are eliminated. The potential of the proposed method is evaluated by analysis of Certified Reference Materials (CRMs). Results show that experimental data are in good agreement with the certified values. The new technique has been successfully employed for the determination of REEs in practical soil and plant samples.  相似文献   

14.
This study reports a sensitive solvent extraction flow-injection (FI) method for the simultaneous spectrophotometric determination of free cyanide and thiocyanate in human saliva and pralidoxime solutions. Cyanide and thiocyanate form colored (λmax=540 nm) ternary complexes with copper and 2,2′-dipyridyl-2-quinolylhydrazone (DPQH) that are extractable into chloroform. The determination of thiocyanates in the presence of cyanides is accomplished after on-line masking of the latter with formaldehyde through a binary inlet static mixer (BISM). Total thiocyanates and cyanides are determined in a second run, without the use of the masking agent. The proposed method allows the determination of the analytes in the range of 0-4 mg l−1 thiocyanates and 0-3 mg l−1 cyanides, with the 3σ detection limits being 0.007 and 0.004 mg l−1, respectively. The precision of the method (sr<1.0% at 1 mg l−1 CN or SCN, n=12 in both cases) and the sampling rates were quite satisfactory (60 injections per hour). The method was applied to the analysis of human saliva and pralidoxime solutions and gave recoveries in the range of 98.0-102.2% for both analytes whereas the mean relative error was er=1.7%.  相似文献   

15.
For the determination of total phosphorus in waters by flow-injection analysis, a continuous microwave oven decomposition with subsequent amperometric detection of orthophosphate is proposed. The percentage digestion was examined for two different decomposition reagents and by varying the pH of the carrier and the length and diameter of the digestion coil. With potassium peroxodisulphate decomposition the recoveries of phosphorus vary from 91 to 100% for organic phosphorus compounds, and with perchloric acid decomposition the recoveries vary from 60 to 70% for inorganic polyphosphates. Calibration graphs are linear for up to 30 mg P l?1, the determination limit is 0.1 mg P l?1 and the precision of the method is 3% (relative standard deviation) (n = 5) at 5 mg P l?1. The sampling rate is 20 h?1. Good recoveries of phosphorus after addition to domestic waste water sample are obtained.  相似文献   

16.
This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0–20 min), Triton X114 concentration (0.043–0.87% w/v) and complexing agent concentration (0.01–0.1 mol l 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5–5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l 1 and 2.9 μg l 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).  相似文献   

17.
A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO3, in a 2 ml column preconditioned with 20 ml 0.01 M HNO3. Subsequently, REEs were quantitatively eluted with 20 ml 7 M HNO3. This solution was evaporated to dryness and the final residue was dissolved in 10 ml 2% HNO3 containing 1 μg l−1 of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ng l−1. The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.  相似文献   

18.
A flow-injection chemiluminescence (CL) method is described for the determination of fluoroquinolones including ciprofloxacin, norfloxacin and ofloxacin. The method is based on the enhancement by these compounds of the weak CL from peroxynitrous acid. The linear ranges are 1.0×10−7 to 1.0×10−5 mol l−1 for ciprofloxacin and norfloxacin, and 3.0×10−7 to 3.0×10−5 mol l−1 for ofloxacin, respectively. The detection limits (S/N=3) are 4.5×10−8 mol l−1 ciprofloxacin, 5.9×10−8 mol l−1 norfloxacin and 1.1×10−7 mol l−1 ofloxacin, respectively. The proposed method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

19.
A very simple, highly sensitive and selective spectrophotometric procedure was developed for the determination of copper(II). It is based on the reaction at pH 4–9 between the synthesized acetophenone-p-chlorophenylthiosemicarbazone (A-p-ClPT) and Cu(II) forming a green complex, Cu(II):A-p-ClPT (1:2), that floats quantitatively with oleic acid (HOL) surfactant. It exhibits a constant and maximum absorbance at 600 nm in both aqueous and surfactant layers. Beer’s law is obeyed over the concentration range 0.25–6.35 mg l?1 with a detection limit of 0.021 mg l?1 for a standard aqueous solution of Cu(II) with a concentration of 3.82 mg l?1 (calculated on the basis of 3σ) and molar absorptivities of 5.5 × 103 and 1.3 × 104 mol l?1 cm?1 in aqueous and surfactant layers, respectively. Sandell’s sensitivity was calculated to be 0.244 μg cm?2 and the relative standard deviation (n = 9) was 0.19%. The different analytical parameters affecting the flotation and determination processes were examined. The proposed procedure has been successfully applied to the analysis of Cu(II) in natural waters, certified scrap steel samples and vitamin samples. The results obtained agree well with those samples analyzed by atomic absorption spectrometry (AAS). Moreover, the flotation mechanism is suggested based on some physical and chemical studies on the solid complexes isolated from aqueous and surfactant layers.  相似文献   

20.
In this work a method is presented for the enzymatic determination of glucose using fluorescence anisotropy. During the enzymatic reaction a change in the fluorescence anisotropy of the glucose oxidase (GOx) is produced; the reaction time at which this change appears (tm) depends on the glucose concentration. A theoretical study has been developed which enables: (a) the correlation of this change in anisotropy with changes in the intensity and the lifetime of the enzyme fluorescence; from this a model which could be generalized to other flavo-enzymes is proposed; (b) the linking of tm with glucose concentration.After optimisation, the proposed method allows the determination of glucose over the range 100-1000 mg l−1. The detection limit is 90 mg l−1and the reproducibility is better than 4% (n = 6, [glucose] = 250 mg l−1). Anisotropy is more selective than conventional fluorescence intensity, and this method has therefore been applied to direct glucose determination in fruit juices without the interference caused by the inner filter effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号