首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors influencing contrast in fast spin-echo MR imaging.   总被引:5,自引:0,他引:5  
Multi-echo pulse sequences for producing T2-weighted images in much reduced imaging times have recently been developed for routine clinical use. A number of recent articles have described the contrast obtained with fast spin-echo (FSE) sequences and have generally indicated that they depict tissues very similarly to conventional spin-echo (SE) imaging. There are, however, some important differences in contrast between some tissues in FSE images. This work presents a detailed study of the contrast obtained with FSE imaging sequences and examines the image sequence and tissue parameters which influence contrast. The use of multiple refocusing pulses produces several subtle effects not seen in conventional SE imaging sequences, and in this study the precise nature and extent of such effects are described. The relative contributions to image contrast of magnetization transfer, the decoupling of J-modulation effects, the production of stimulated echoes and direct saturation effects, of diffusion and of the effects of the differential attenuation of different spatial frequencies, are each quantified. The mechanisms responsible for the brighter fat signal seen in FSE images, as well as the loss of signal from some other tissues, are explained. Computer simulations, phantom experiments, and clinical images are all used to support the conclusions.  相似文献   

2.

Objective

T2 mapping has been used widely in detecting cartilage degeneration in osteoarthritis. Several scanning sequences have been developed in the determination of T2 relaxation times of tissues. However, the derivation of these times may vary from sequence to sequence. This study seeks to evaluate the sequence-dependent differences in T2 quantitation of cartilage, muscle, fat and bone marrow in the knee joint at 3 T.

Methods

Three commercial phantoms and 10 healthy volunteers were studied using 3 T MR. T2 relaxation times of the phantoms, cartilage, muscle, subcutaneous fat and marrow were derived using spin echo (SE), multiecho SE (MESE), fast SE (FSE) with varying echo train length (ETL), spiral and spoiler gradient (SPGR) sequences. The differences between these times were then evaluated using Student's t test. In addition, the signal-to-noise ratio (SNR) efficiency and coefficient of variation of T2 from each sequence were calculated.

Results

The average T2 relaxation time was 36.38±5.76 ms in cartilage and 34.08±6.55 ms in muscle, ranging from 27 to 45 ms in both tissues. The times for subcutaneous fat and marrow were longer and more varying, ranging from 41 to 143 ms and from 42 to 160 ms, respectively. In FSE acquisition, relaxation time significantly increases as ETL increases (P<.05). In cartilage, the SE acquisition yields the lowest T2 values (27.52±3.10 ms), which is significantly lower than those obtained from other sequences (P<.002). T2 values obtained from spiral acquisition (38.27±6.45 ms) were higher than those obtained from MESE (34.35±5.62 ms) and SPGR acquisition (31.64±4.53 ms). These differences, however, were not significant (P>.05).

Conclusion

T2 quantification can be a valuable tool for the diagnosis of degenerative disease. Several different sequences exist to quantify the relaxation times of tissues. Sequences range in scan time, SNR efficiency, reproducibility and two- or three-dimensional mapping. However, when choosing a sequence for quantitation, it is important to realize that several factors affect the measured T2 relaxation time.  相似文献   

3.
The purpose of this study was to compare the gradient spin-echo (GRASE) to the fast spin-echo (FSE) implementation of fast fluid-attenuated inversion recovery (FLAIR) sequences for brain imaging. Thirty patients with high signal intensity lesions on T2-weighted images were examined on a 1.5 T MR system. Scan time-minimized thin-section FLAIR-FSE and FLAIR-GRASE sequences were obtained and compared side by side. Image assessment criteria were lesion conspicuity, contrast between different types of normal tissue, image quality, and artifacts. In addition, contrast ratios and contrast-to-noise ratios were determined. Compared to FSE, the GRASE technique allowed a 17% reduction in scan time but conspicuity of small lesions in particular was significantly lower on FLAIR-GRASE images because of higher image noise and increased artifacts. Gray-white differentiation was slightly worse on FLAIR-GRASE. Physiological ferritin deposition appeared slightly darker on FLAIR-GRASE images and susceptibility artifacts were stronger. Fatty tissue was less bright with FLAIR-GRASE. With current standard hardware equipment, the GRASE technique is not an adequate alternative to FSE for the implementation of fast FLAIR sequences in routine clinical MR brain imaging.  相似文献   

4.
Cardiac image quality in terms of spatial resolution and signal contrast was assessed for conventional and newly developed T(2)-weighted fast spin-echo imaging with high k-space segmentation. The capability in revealing regional myocardial edema and cellular damage was examined by a porcine model using histopathologic correlation. Twelve porcine hearts were excised from slaughtered animals and instantly perfused with 1000 mL cold cardioplegic solution. After 4 h of cold ischemia the hearts were reperfused for one hour using a "Langendorff" perfusion model followed by MR imaging at 1.5 Tesla. Three additional pig hearts served as controls and were studied by MR directly after harvesting. Histopathological analysis of regional tissue changes was performed macro- and microscopically. Short axis T(2)-weighted (3000/45 and 90) high quality fast spin-echo (FSE) images were recorded without cardiac action and signal intensity was correlated with histology. These images also served as gold standard for evaluation of newly developed faster sequences allowing measuring times shorter than 20 s. Fast T(2)-weighted imaging comprised single-slice fast spin echo (moderate echo train length of 23 echoes, FSE(m)), and multi-slice single-shot half-Fourier fast spin-echo (71 echoes, FSE(HASTE)) sequences, supplemented by versions with inversion recovery preparation (FSE(m)IR and FSE(HASTE)IR). Systolic function after reperfusion was restored in 10 porcine hearts. Tissue alterations included myocardial edema and contraction band necrosis which was found to be most severe in myocardium with maximum T(2) SI. Especially FSE(m) and FSE(m)IR sequences allowed differentiation of all categories of tissue damage on a high level of significance. In contrast, single-shot FSE(HASTE) and FSE(HASTE)IR sequences did not provide sufficient image quality to discriminate moderate and severe myocardial damage (p > 0.05). Different degrees of myocardial injury after ischemia and reperfusion can be staged by MR imaging, especially using conventional high resolution T(2)-weighted FSE sequences. The animal study indicates that fast T(2)-weighted FSE(m) and FSE(m)IR sequences lead to superior image quality and diagnostic accuracy compared to FSE(HASTE) and FSE(HASTE)IR imaging.  相似文献   

5.
The purpose of this study was to characterize the effects of stimulated echo contamination on MR-based iron measurement derived from quantitative T2 images and develop a method for retrospective correction. Two multiple spin-echo (MSE) pulse sequences were implemented with different amounts of stimulated echo contamination. Agarose-based phantoms were constructed that simulate the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron. Additionally, myocardial iron was assessed in nine human subjects with transfusion iron overload. These data were used to determine the influence of stimulated echoes on iron measurements made by an MR-based iron quantification model that can separately measure dispersed and aggregated iron. The study found that stimulated echo contamination caused an underestimation of dispersed (ferritin-like) iron and an overestimation of aggregated (hemosiderin-like) iron when applying this model. The relationship between the measurements made with and without stimulated echo appears to be linear. The findings suggest that while it is important to use MSE sequences with minimal stimulated echo in T2-based iron quantification, it appears that data acquired with sub-optimal sequences can be retrospectively corrected using the methodology described here.  相似文献   

6.
Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold.  相似文献   

7.
In this work, we have evaluated the performance of a diffusion-sensitive fast spin-echo (FSE) pulse sequence. The proposed pulse sequence utilises velocity-compensating diffusion-encoding gradients and includes the collection of navigator echoes. Spoiler gradients were inserted in the slice-selecting direction to minimise effects from stimulated echoes. Calculations of the b values showed that cross-terms between imaging gradients and diffusion gradients only led to a marginal increase of b values. Pixel-wise calculation of apparent diffusion coefficient (ADC) maps was performed numerically, considering cross-terms between diffusion-encoding and imaging gradients. The sequences investigated used echo train lengths of 16, 8 and 4 echoes and were encoded in either the slice-, frequency- or phase-encoding direction. In order to allow for higher b values a pulse-sequence version using non-motion compensating diffusion-encoding gradients was written. Phantom measurements were performed and the diffusion coefficients of water and acetone were reasonable. Seven healthy volunteers (age 28–50 years) were examined and apparent diffusion coefficient values agreed well with expected values. Diffusion-weighted images, apparent diffusion coefficient maps and images corresponding to the trace of the diffusion tensor of good quality were retrieved in vivo.  相似文献   

8.
Purpose: To study whether application of magnetization transfer contrast (MTC) improves visibility and detection of multiple sclerosis (MS) lesions on long repetition time (TR) conventional spin-echo (CSE) or fast spin-echo (FSE) magnetic resonance (MR) imaging.Material and methods: In 20 patients and 5 controls, MR images were obtained using long repetition time CSE and FSE sequences with and without MTC. Signal-to-noise ratios of normal appearing white matter (NAWM) and selected lesions, and contrast-to-noise ratios between lesions and NAWM, were calculated. Lesions were counted and total lesion volume was measured in a blinded fashion for each sequence.Results: In controls, MT effect in white matter (16.3% vs. 12.2%) was higher for CSE than for FSE (p < 0.01). Application of MTC to either CSE or FSE resulted in a significantly lower decrease in signal intensity of NAWM in patients compared to white matter in controls (p < 0.01). Furthermore, in patients signal intensity of lesions was less decreased than signal intensity of NAWM (p < 0.01). Compared to sequences without MTC, contrast-to-noise ratios were significantly higher on both CSE (10.9%) and FSE (6.3%) when MTC was applied (p < 0.01). Despite better visibility, the number of lesions detected on either sequences did not increase when MTC was applied. For CSE with MTC, we found an almost equal number of lesions and for FSE with MTC, we found even less lesions (p < 0.01). Total lesion volume did not change significantly when MTC was applied.Conclusion: Although contrast between lesions and NAWM improved when magnetization transfer contrast was applied, this did not increase detection of MS lesions on either CSE or FSE MR imaging.  相似文献   

9.
Image contrast is calculated by inputting experimental 2D T1T2 relaxation spectra into the ODIN software interface. The method involves characterising a magnetic resonance imaging pulse sequence with a “relaxation signature” which describes the sensitivity of the sequence to relaxation and is independent of sample parameters. Maximising (or minimising) the overlap between the experimental 2D T1T2 relaxation spectra and the relaxation signature can then be used to maximise image contrast. The concept is illustrated using relaxation signatures for the echo planar imaging and Turbo spin-echo imaging sequences, together with in-vitro 2D T1T2 spectra for liver and cartilage.  相似文献   

10.
To assess the influence of Mangafodipir Trisodium on the imaging properties of abdominal organs when using T1-weighted gradient-echo (GE) and T2-weighted turbo spin-echo (TSE) sequences, thirty patients with focal lesions in the liver were examined at a field strength of 1.5 T before and after intravenous administration of Mangafodipir Trisodium (dose: 5 μmol/kg of body weight).Administration of Mangafodipir Trisodium led to a significant increase in the signal intensity of the liver tissue (p < 0.001), the spleen (p < 0.01), the pancreas (p < 0.001), and the kidneys (p < 0.001) in the T1-weighted GE sequence, while there was no relevant enhancement in fatty tissue and the musculature. In the T2-weighted turbo spin-echo sequence, there was no relevant change in the signal following administration of a contrast agent. The contrast-to-noise ratio (C/N) between the lesions and the liver tissue increased significantly in the post-contrast T1-weighted GE sequence (p < 0.001), while there was no change in the contrast-to-noise ratio in the post-contrast T2-weighted turbo spin-echo sequence. The contrast-to-noise ratio of the plain T2-weighted TSE sequence was significantly higher than that in the post-contrast T1-weighted GE sequence (p < 0.001). Although Mangafodipir Trisodium was primarily developed as a hepatobiliary contrast agent for demonstration and differentiation of liver lesions, it also affects the signal levels in the pancreas, spleen, and kidneys in the T1-weighted image. Awareness of this effect on the extrahepatic tissue makes it easier to interpret pathological findings in magnetic resonance imaging (MRI) of the abdomen.  相似文献   

11.
There are many challenges in developing robust imaging biomarkers that can be reliably applied in a clinical trial setting. In the case of dynamic contrast-enhanced (DCE) MRI, one such challenge is to obtain accurate precontrast T1 maps for subsequent use in two-compartment pharmacokinetic models commonly used to fit the MR enhancement time courses. In the prostate, a convenient and common approach for this task has been to use the same 3D spoiled gradient-echo sequence used to collect the DCE data, but with variable flip angles (VFAs) to collect data suitable for T1 mapping prior to contrast injection. However, inhomogeneous radiofrequency conditions within the prostate have been found to adversely affect the accuracy of this technique. Herein we demonstrate the sensitivity of DCE pharmacokinetic parameters to precontrast T1 values and examine methods to improve the accuracy of T1 mapping with flip angle-corrected VFA SPGR methods, comparing T1 maps from such methods with “gold standard” reference T1 maps generated with saturation recovery experiments performed with fast spin-echo (FSE) sequences.  相似文献   

12.
The collection of fast imaging techniques that use multiple spin-echo (MSE) sequences relies on a precise phase relationship between spin echoes and stimulated echoes that form along the radiofrequency refocusing pulse train. Failure to achieve this condition produces dark banding artifacts that result from destructive interference between signal coherence pathways. Satisfying this condition on the microsecond timescale required is technically challenging for conditions involving strong diffusion-weighted gradients, for arbitrary orientation acquisitions and at large field strengths with high-resolution acquisitions. Two clinically significant MSE sequences, fast spin echo (FSE) and balanced steady-state free precession (b-SSFP), are investigated in this work using a 4-T whole-body scanner. We developed a readout-projection-based prescan technique that ensures coherent signal formation by utilizing banding artifacts to automatically adjust gradient balance. Subsequent image acquisition using the results of this prescan permits the formation of coherent-echo images, which are robust under challenging imaging conditions. The robustness of this approach is demonstrated for FSE and b-SSFP images obtained from the knees of human volunteers. We believe that the use of this prescan calibration technique for the alignment of signal pools in MSE sequences is critical at high fields and will facilitate the implementation of high-quality clinically significant sequences such as FSE and b-SSFP.  相似文献   

13.
Localized tissue transverse relaxation time (T2) is obtained by fitting a decaying exponential to the signals from several spin-echo experiments at different echo times (TE). Unfortunately, time constraints in magnetic resonance spectroscopy (MRS) often mandate in vivo acquisition schemes at short repetition times (TR), that is, comparable with the longitudinal relaxation constant (T1). This leads to different T1-weighting of the signals at each TE. Unaccounted for, this varying weighting causes systematic underestimation of the T2's, sometimes by as mush as 30%. In this article, we (i) analyze the phenomenon for common MRS spin-echo T2 acquisition schemes; (ii) propose a general post hoc T1-bias correction for any (TR, TE) combination; (iii) show that approximate knowledge of T1 is sufficient, since a 20% uncertainty in T1 leads to under 3% bias in T2; and consequently, (iv) efficient, precision-optimized short TR spin-echo T2 measurement protocols can be designed and used without risk of accuracy loss. Tables of correction for single-refocusing (conventional) spin-echo and double refocusing, such as, PRESS acquisitions, are provided.  相似文献   

14.
The experimental conditions required for discrimination of various types of tissue in fruits of cultivated strawberry (Fragaria × Ananassa) at high fields (ca. 7 T) have been investigated. In marked contrast to soft fruits of other species, from which informative images have been derived at high fields using a variety of pulse sequences and acquisition parameters, appreciable image intensities from parenchymal and vascular tissues in healthy strawberry fruits were obtained only with a spin-echo imaging sequence using large sweep widths (ca. 100,000 Hz), and consequently small values for TE (<5 ms), indicating predominantly short T2 values for these tissues. Damage caused by infection by the fungal pathogen Botrytis cinerea is readily seen as a result of a large increase in T2 in the infected tissue, whereas ripening processes appear to be characterized primarily by small variations in the T2-weighted contrast and in the relative magnitudes of T1 between vascular and parenchymal tissue. In addition, it was possible selectively to enhance the contributions to images from the achenes (“seeds”) by using very short relaxation delays, thereby enhancing T1-dominated contrast mechanisms.  相似文献   

15.
Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T2 relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90° pulses in a 90°xτ−90°x magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90° pulse and the 180° pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B1 amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.  相似文献   

16.
Electron spin-echo experiments in the photo-excited triplet states of quinoxaline-d6 and naphthalene-d8 at 1·2 K in an external magnetic field are presented. These include two-pulse Hahn echoes, three-pulse stimulated echoes and Carr-Purcell pulse-echo trains. The decay of the Hahn and stimulated echoes as a function of pulse interval yields measures of the spin relaxation times. Furthermore, the Hahn echo is used to obtain E.P.R. line shapes and the dynamics of the triplet sublevel populations. The angular dependence of the Hahn echo is also investigated. The Hahn echo decay time and decay modulation suggest the kind of role played by nuclear spins in the loss of electron spin phase coherence. Some promising characteristics of the pulse method are discussed.  相似文献   

17.

Purpose

To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique.

Material and methods

In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen’s d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology.

Results

Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly reflected pathological features in contusion spinal cord injury.

Conclusion

Our in vivo imaging results indicate that averaging the phased multiple spin-echo images yields an 84% signal-noise-ratio increase over the spin-echo images and a 41% gain over the magnitude averaged multiple spin-echo images with equal acquisition time. Current results from the animal model of spinal cord injury suggest that the phased multiple spin-echo images could be used to improve signal-noise-ratio.  相似文献   

18.
The molecular motion contrast parameter for NMR imaging of solids and quasi-solids based on the spin-lattice relaxation (T leff) in multiple-pulse experiments is discussed. For Ostroff-Waugh multiple-pulse sequence theT leff contrast parameter is evaluated in slow and fast molecular motion regime and compared with spin-lattice relaxation in the rotating frame contrast parameter. It is shown thatT leff is offering a good molecular motion contrast in NMR imaging of polymer systems. The radio-frequency pulse scheme forT leff-imaging using magic-echo phase-encoding procedure for recording spatial distribution in solids is introduced. A method forT leff-weighted imaging using gradient spin-echo valid for weak dipolar solids is also discussed. The one-dimensional protonT leff image using Ostroff-Waugh pulse sequence in combination with frequency-encoding imaging procedure is presented for a phantom of poly(ethyleneoxide) and poly(methylmethacrylate). The distribution of mechanical stresses in a acrylate film on glass is investigated by protonT leff-imaging. A proton spin-density image weighted byT leff, for a mixture of two elastomers with different crosslink density is also shown.  相似文献   

19.
An experimental protocol is described that allows two-dimensional (2D) nuclear magnetic resonance (NMR) correlations of apparent diffusion coefficient Dapp and effective transverse relaxation time T2,eff to be acquired on a bench-top spectrometer using pulsed field gradients (PFG) in such a manner as to emulate DappT2,eff correlations acquired using a well-logging tool with a fixed field gradient (FFG). This technique allows laboratory-scale NMR measurements of liquid-saturated cored rock to be compared directly to logging data obtained from the well by virtue of providing a comparable acquisition protocol and data format, and hence consistent data processing. This direct comparison supports the interpretation of the well-logging data, including a quantitative determination of the oil/brine saturation. The DT2 pulse sequence described here uses two spin echoes (2SE) with a variable echo time to encode for diffusion. The diffusion and relaxation contributions to the signal decay are then deconvolved using a 2D numerical inversion. This measurement allows shorter relaxation time components to be probed than in conventional diffusion measurements. A brief discussion of the numerical inversion algorithms available for inverting these non-rectangular data is included. The PFG-2SE sequence described is well suited to laboratory-scale studies of porous media and short T2 samples in general.  相似文献   

20.
We studied spin echoes formed in the nematic crystalline phase using 90°- τ-β pulse sequence, where τ is the time between pulses and β the rotation produced by the second pulse. The decay of the echoes as a function of 2τ is nearly exponentail with a time constant TE. Both TE and the echo amplitude at a fixed τ were studied as a function of β in two nematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号