首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

2.
Necessary and sufficient conditions of optimality are given for a nonlinear nondifferentiable program, where the constraints are defined via closed convex cones and their polars. These results are then used to obtain an existence theorem for the corresponding stationary point problem, under some convexity and regularity conditions on the functions involved, which also guarantee an optimal solution to the programming problem. Furthermore, a dual problem is defined, and a strong duality theorem is obtained under the assumption that the constraint sets of the primal and dual problems are nonempty.  相似文献   

3.
For a kind of fractional programming problem that the objective functions are the ratio of two DC (difference of convex) functions with finitely many convex constraints, in this paper, its dual problems are constructed, weak and strong duality assertions are given, and some sufficient and necessary optimality conditions which characterize their optimal solutions are obtained. Some recently obtained Farkas-type results for fractional programming problems that the objective functions are the ratio of a convex function to a concave function with finitely many convex constraints are the special cases of the general results of this paper.  相似文献   

4.
In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush-Kuhn-Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program with equilibrium constraints; the complementary conditions of the lower level problem are then appended to the upper level objective function with a classical penalty. These complementarity conditions are not relaxed from the constraints and they are reformulated as a system of smooth equations by mean of semismooth equations using Fisher-Burmeister functional. Then, using a quadratic sequential programming method, we solve a series of smooth, regular problems that progressively approximate the nonsmooth problem. Some preliminary computational results are reported, showing that our approach is efficient.  相似文献   

5.
Xun Qian  Jie Sun 《Optimization》2017,66(4):589-608
In this paper, we analyse three interior point continuous trajectories for convex programming with general linear constraints. The three continuous trajectories are derived from the primal–dual path-following method, the primal–dual affine scaling method and the central path, respectively. Theoretical properties of the three interior point continuous trajectories are fully studied. The optimality and convergence of all three interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for all three interior point continuous trajectories does not require the strict complementarity or the analyticity of the objective function. These results are new in the literature.  相似文献   

6.
In this paper, we are concerned with an interval-valued programming problem. Sufficient optimality conditions are established under generalized convex functions for a feasible solution to be an efficient solution. Appropriate duality theorems for Mond-Weir and Wolfe type duals are discussed in order to relate the efficient solutions of primal and dual programs.  相似文献   

7.
We present a new strategy for choosing primal and dual steplengths in a primal–dual interior-point algorithm for convex quadratic programming. Current implementations often scale steps equally to avoid increases in dual infeasibility between iterations. We propose that this method can be too conservative, while safeguarding an unequally-scaled steplength approach will often require fewer steps toward a solution. Computational results are given.  相似文献   

8.
We propose a new class of incremental primal–dual techniques for solving nonlinear programming problems with special structure. Specifically, the objective functions of the problems are sums of independent nonconvex continuously differentiable terms minimized subject to a set of nonlinear constraints for each term. The technique performs successive primal–dual increments for each decomposition term of the objective function. The primal–dual increments are calculated by performing one Newton step towards the solution of the Karush–Kuhn–Tucker optimality conditions of each subproblem associated with each objective function term. We show that the resulting incremental algorithm is q-linearly convergent under mild assumptions for the original problem.  相似文献   

9.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

10.
Logarithmic SUMT limits in convex programming   总被引:1,自引:1,他引:0  
The limits of a class of primal and dual solution trajectories associated with the Sequential Unconstrained Minimization Technique (SUMT) are investigated for convex programming problems with non-unique optima. Logarithmic barrier terms are assumed. For linear programming problems, such limits – of both primal and dual trajectories – are strongly optimal, strictly complementary, and can be characterized as analytic centers of, loosely speaking, optimality regions. Examples are given, which show that those results do not hold in general for convex programming problems. If the latter are weakly analytic (Bank et al. [3]), primal trajectory limits can be characterized in analogy to the linear programming case and without assuming differentiability. That class of programming problems contains faithfully convex, linear, and convex quadratic programming problems as strict subsets. In the differential case, dual trajectory limits can be characterized similarly, albeit under different conditions, one of which suffices for strict complementarity. Received: November 13, 1997 / Accepted: February 17, 1999?Published online February 22, 2001  相似文献   

11.
In this paper, we consider the class of linearly constrained nonconvex quadratic programming problems, and present a new approach based on a novel Reformulation-Linearization/Convexification Technique. In this approach, a tight linear (or convex) programming relaxation, or outer-approximation to the convex envelope of the objective function over the constrained region, is constructed for the problem by generating new constraints through the process of employing suitable products of constraints and using variable redefinitions. Various such relaxations are considered and analyzed, including ones that retain some useful nonlinear relationships. Efficient solution techniques are then explored for solving these relaxations in order to derive lower and upper bounds on the problem, and appropriate branching/partitioning strategies are used in concert with these bounding techniques to derive a convergent algorithm. Computational results are presented on a set of test problems from the literature to demonstrate the efficiency of the approach. (One of these test problems had not previously been solved to optimality). It is shown that for many problems, the initial relaxation itself produces an optimal solution.  相似文献   

12.
This paper aims to study a broad class of generalized semi-infinite programming problems with (upper and lower level) objectives given as the difference of two convex functions, and (lower level) constraints described by a finite number of convex inequalities and a set constraints. First, we are interested in some various lower level constraint qualifications for the problem. Then, the results are used to establish efficient upper estimate of certain subdifferential of value functions. Finally, we apply the obtained subdifferential estimates to derive necessary optimality conditions for the problem.  相似文献   

13.
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.  相似文献   

14.
This paper presents the convergence proof and complexity analysis of an interior-point framework that solves linear programming problems by dynamically selecting and adding relevant inequalities. First, we formulate a new primal–dual interior-point algorithm for solving linear programmes in non-standard form with equality and inequality constraints. The algorithm uses a primal–dual path-following predictor–corrector short-step interior-point method that starts with a reduced problem without any inequalities and selectively adds a given inequality only if it becomes active on the way to optimality. Second, we prove convergence of this algorithm to an optimal solution at which all inequalities are satisfied regardless of whether they have been added by the algorithm or not. We thus provide a theoretical foundation for similar schemes already used in practice. We also establish conditions under which the complexity of such algorithm is polynomial in the problem dimension and address remaining limitations without these conditions for possible further research.  相似文献   

15.
Convex composite multi-objective nonsmooth programming   总被引:4,自引:0,他引:4  
This paper examines nonsmooth constrained multi-objective optimization problems where the objective function and the constraints are compositions of convex functions, and locally Lipschitz and Gâteaux differentiable functions. Lagrangian necessary conditions, and new sufficient optimality conditions for efficient and properly efficient solutions are presented. Multi-objective duality results are given for convex composite problems which are not necessarily convex programming problems. Applications of the results to new and some special classes of nonlinear programming problems are discussed. A scalarization result and a characterization of the set of all properly efficient solutions for convex composite problems are also discussed under appropriate conditions.This research was partially supported by the Australian Research Council grant A68930162.This author wishes to acknowledge the financial support of the Australian Research Council.  相似文献   

16.
In this paper, we develop necessary conditions for global optimality that apply to non-linear programming problems with polynomial constraints which cover a broad range of optimization problems that arise in applications of continuous as well as discrete optimization. In particular, we show that our optimality conditions readily apply to problems where the objective function is the difference of polynomial and convex functions over polynomial constraints, and to classes of fractional programming problems. Our necessary conditions become also sufficient for global optimality for polynomial programming problems. Our approach makes use of polynomial over-estimators and, a polynomial version of a theorem of the alternative which is a variant of the Positivstellensatz in semi-algebraic geometry. We discuss numerical examples to illustrate the significance of our optimality conditions.  相似文献   

17.
18.
《Optimization》2012,61(2):207-233
Abstract

In this paper we study the welldefinedness of the central path associated to a nonlinear convex semidefinite programming problem with smooth objective and constraint functions. Under standard assumptions, we prove that the existence of the central path is equivalent to the nonemptiness and boundedness of the optimal set. Other equivalent conditions are given, such as the existence of a strictly dual feasible point or the existence of a single central point. The monotonic behavior of the primal and dual logarithmic barriers and of the primal and dual objective functions along the trajectory is also discussed. The existence and optimality of cluster points is established and finally, under the additional assumption of analyticity of the data functions, the convergence of the primal-dual trajectory is proved.  相似文献   

19.

In this paper, we establish some quotient calculus rules in terms of contingent derivatives for the two extended-real-valued functions defined on a Banach space and study a nonsmooth multiobjective fractional programming problem with set, generalized inequality and equality constraints. We define a new parametric problem associated with these problem and introduce some concepts for the (local) weak minimizers to such problems. Some primal and dual necessary optimality conditions in terms of contingent derivatives for the local weak minimizers are provided. Under suitable assumptions, sufficient optimality conditions for the local weak minimizers which are very close to necessary optimality conditions are obtained. An application of the result for establishing three parametric, Mond–Weir and Wolfe dual problems and several various duality theorems for the same is presented. Some examples are also given for our findings.

  相似文献   

20.
We survey some recent developments in duality theory with the idea of explaining and unifying certain basic duality results in both nonlinear and integer programming. The idea of replacing dual variables (prices) by price functions, suggested by Everett and developed by Gould, is coupled with an appropriate dual problem with the consequence that many of the results resemble those used in linear programming. The dual problem adopted has a (traditional) economic interpretation and dual feasibility then provides a simple alternative to concepts such as conjugate functions or subdifferentials used in the study of optimality. In addition we attempt to make precise the relationship between primal, dual and saddlepoint results in both the traditional Lagrangean and the more general duality theories and to see the implications of passing from prices to price functions. Finally, and perhaps surprisingly, it appears that all the standard algorithms terminate by constructing primal and dual feasible solutions of equal value, i.e., by satisfying generalised optimality conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号