首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Adsorption of cationic polyelectrolyte, a homopolymer of maleimide propyl trimethylammonium chloride (MPTMAC), on silica nanoparticles from aqueous solution was studied. The adsorbed amount of MPTMAC and the adsorption layer thickness from solutions of different pH, polyelectrolyte concentration, salt type, and salt concentration were measured. The adsorbed amount exhibited a maximum as a function of the electrolyte concentration. The onset of the decline in the adsorbed amount depended on the type of counterions. The thickness of the adsorption layer increased gradually with increased of electrolyte concentration and leveled off at high electrolyte concentration. The enhanced adsorption in the presence of Na2SO4 can be explained by the bivalent SO4(2-) causing a better shielding effect. With increasing pH the adsorbed amount of MPTMAC increased, whereas the thickness of an adsorbed layer of MPTMAC decreased. At low polyelectrolyte concentrations unstable silica suspensions were observed from a stability test. At high polyelectrolyte concentrations the higher particle coverage caused electrosteric stabilization of the dispersion. However, further increase in MPTMAC concentration after saturated adsorption would flocculate the dispersed system. At low pH, MPTMAC tending to create a loops or tails conformation stabilized the suspension.  相似文献   

2.
The conformation of cationic polyelectrolytes preadsorbed on macroscopic silica surfaces was studied before and after addition of colloidal silica (CS) and compared to the fixation capacity of CS. The study included two polyelectrolytes of equal charge density, cationic polyacrylamide and cationic dextran. Adsorbed amounts were determined with stagnation point adsorption reflectometry (SPAR) and quartz crystal microgravimetry (QCM). Unsaturated layers of polyelectrolyte were formed in SPAR by stopping the adsorption at a fractional coverage relative to saturation adsorption. These layers were probed by secondary saturation adsorption of colloidal silica (CS). At low salt concentrations a high fractional coverage of polyelectrolyte was required to attain adsorption of CS, while significant adsorption of CS was found also for low fractional coverages of polyelectrolyte at salt concentrations above 10 mM NaCl. Saturation adsorption of cationic polyacrylamide (CPAM) and cationic dextran (Cdextran) onto the silica surface was found to be similar, while the secondary adsorption of CS was significantly higher onto preadsorbed CPAM compared with Cdextran. The QCM and SPAR data together indicated that the adsorbed layer of Cdextran was thinner than CPAM, and that a loose, expanded layer was formed after adsorption of CS on CPAM but not on Cdextran.  相似文献   

3.
 Adsorption of a well-characterized cationic polyacrylamide (CPAM) onto the surface of a model colloid (monodisperse polystyrene latex with carboxylic functional groups) was studied over a wide range of pH (4–9) and KCl concentration (c s =10-3–0.3 M). The surface charge density of the latex particles with and without adsorbed CPAM was also measured over the same range of electrolyte compositions. The adsorbed amount of CPAM increases with increase in c s and pH. The polyelectrolyte adsorption alters substantially the surface charge density of the latex particles as compared to the polymer-free case. A large overcompensation of the surface charge by the adsorbed polyelectrolyte is established at high c s and low pH. A qualitative explanation of the observed features is put forward. Received: 3 December 1996 Accepted: 20 January 1997  相似文献   

4.
The adsorption of lignin on cellulose fibres at neutral pH and the effects of calcium ions and a cationic polyelectrolyte (PDADMAC) on the adsorption have been studied. The surface coverage by lignin was determined by electron spectroscopy for chemical analysis (ESCA). The morphology of the lignin layer was studied by atomic force microscopy (AFM). The effect of adsorbed polyelectrolyte and lignin on the strength properties of the paper was also studied. The adsorbed amount of lignin increased monotonically with lignin concentration. Addition of calcium ions resulted in a very high surface coverage by lignin. PDADMAC did not enhance the adsorption of lignin, but without addition of polyelectrolyte the lignin was very weakly attached to the fibre surface. PDADMAC formed complexes with lignin in solution. At high polymer/lignin concentration ratios the charge of the complex was positive and it adsorbed irreversibly as large blobs. At low ratios the complex was easily washed away from the fibre surface. When PDADMAC was pre-adsorbed on the fibre surface the lignin adsorbed as small granules at all lignin concentrations. Neither PDADMAC nor lignin alone increased the strength of pulp sheets significantly. However, together they increased the bonding between fibres.  相似文献   

5.
In this work the effect of ionic strength on the adsorption behavior of cationic polyelectrolyte (acrylamide-acrylamidopropyltrimethylammonium chloride) and negatively charged silica particles has been studied by means of ellipsometry. The adsorption of the polyelectrolyte was observed to increase with increasing salt concentration, a behavior typical for polyelectrolytes with a screening-reduced solvency and a nonelectrostatic affinity for the surface. A similar dependence on the ionic strength was observed when studying the electrolyte effect on the nanoparticle adsorption to the preadsorbed polyelectrolyte film, suggesting that the polyelectrolyte surface conformations largely govern the binding capacity of the particles to the surface.  相似文献   

6.
The adsorption of and conformation adopted by a branched-linear polymer conjugate to the hydrophilic silica-aqueous solution interface have been studied by in situ null ellipsometry and Monte Carlo simulations. The conjugate is a highly branched polyethyleneimine structure with ethyleneoxide chains grafted to its primary and secondary amino groups. In situ null ellipsometry demonstrated that the polymer conjugate adsorbs to the silica surface from water and aqueous solution of 1 mM asymmetric divalent salt (calcium and magnesium chloride to emulate hard water) over a large pH range. The adsorbed amount is hardly affected by pH and large charge reversal on the negatively charged silica surface occurred at pH = 4.0, due to the adsorption of the cationic polyelectrolyte. The Monte Carlo simulations using an appropriate coarse-grained model of the polymer in solution predicted a core-shell structure with no sharp boundary between the ethyleneimine and ethyleneoxide moieties. The structure at the interface is similar to that in solution when the polymer degree of protonation is low or moderate while at high degree of protonation the strong electrostatic attraction between the ethyleneimine core and oppositely charged silica surface distorts the ethyleneoxide shell so that an "anemone"-like configuration is adopted. The adsorption of alkyl benzene sulfonic acid (LAS) to a preadsorbed polymer layer was also investigated by null ellipsometry. The adsorption data brought additional support for the existence of a strong polymer adsorption and showed the presence of a binding which was further enhanced by the decreased solvency of the surfactant in the salt solution and confirmed the surface charge reversal by the polymer adsorption at pH = 4.0.  相似文献   

7.
The adsorption behavior of a low charge density cationic polyelectrolyte to cellulosic fibers has been studied. Cationic dextran served as a model polyelectrolyte, as it can be prepared over a range in molecular mass and charge density. The adsorption behavior of the cationic dextran was measured in electrolyte-free conditions using polyelectrolyte titration techniques. By fluorescent labeling the cationic dextran, the extent to which adsorption occurs inside the porous structure was further determined by fluorescent confocal laser scanning microscopy. Cationic dextran having a sufficiently low charge density adsorbed into the pores, although the extent the cationic dextran adsorbed was governed by the molecular mass. The adsorption behavior of the cationic dextran was also studied in various electrolyte concentrations. The adsorbed mass monotonically decreased with increasing electrolyte, as the electrostatic interaction with the substrate was more effectively screened. This behavior also suggests that the interactions between adsorbed polyelectrolyte chains, i.e. lateral correlation effects, are negligible for low charge density polyelectrolytes. Finally, the effect of having a preadsorbed layer of cationic dextran on the adsorption behavior was determined in electrolyte-free conditions using fluorescent double staining techniques. The preadsorbed cationic dextran had almost no effect on the adsorption of low molecular mass fractions. Low molecular mass fractions directly adsorbed into the pore structure, as opposed to adsorbing to a free surface and diffusing into the pores. It was also shown that cationic dextran can be selectively adsorbed to different locations, such that the surface of a porous substrate can be treated uniquely from the bulk.  相似文献   

8.
Structure of Protein Layers during Competitive Adsorption   总被引:1,自引:0,他引:1  
The formation of protein layers during competitive adsorption was studied with ellipsometry. Single, binary, and ternary protein solutions of human serum albumin (HSA), IgG, and fibrinogen (Fgn) were investigated at concentrations corresponding to blood plasma diluted 1/100. As a model surface, hydrophobic hexamethyldisiloxane (HMDSO) plasma polymer modified silica was used. By using multiambient media measurements of the bare substrate prior to protein adsorption the adsorbed amount as well as the thickness and refractive index of the adsorbed protein layer could be followedin situand in real time. Under conditions used in these experiments neither IgG nor fibrinogen could fully displace serum albumin from the interface. The buildup of the protein layer occurred via different mechanisms for the different protein systems. Fgn adsorbed in a rather flat orientation at low adsorbed amounts, while at higher surface coverage the protein reoriented to a more upright orientation in order to accommodate more molecules in the adsorbed layer. IgG adsorption proceeded mainly end-on with little reorientation or conformational change on adsorption. Finally, for HSA an adsorbed layer thickness greater than the molecular dimensions was observed at high concentrations (although not at low), indicating that aggregates or multilayers formed on HMDSO plasma polymer surfaces. For all protein mixtures the adsorbed layer structure and buildup indicated that Fgn was the protein dominating the adsorbed layer, although HSA partially blocked the adsorption of this protein. At high surface concentration, HSA/Fgn mixtures show an abrupt change in both adsorbed layer thickness and refractive index suggesting, e.g., an interfacial phase transition of the mixed protein layer. A similar but less pronounced behavior was observed for HSA/IgG. For IgG/Fgn and HSA/IgG/Fgn a buildup of the adsorbed layer similar to that displayed by Fgn alone was observed.  相似文献   

9.
The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytescationic polyacrylamides of four charge densities and one cationic dextranwere examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at 1 M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.  相似文献   

10.
The adsorption of a series of amphiphilic diblock copolymers of poly(ethylene oxide) (PEO) and poly(DL-lactide) (PL) at hydrophobized silica from aqueous solution was studied using time-resolved ellipsometry and reflectometry. The adsorbed amounts only display a weak dependence on the copolymer composition in both water and phosphate-buffered solution. For the short copolymers, the layer thickness decreases slightly with increasing length of the hydrophobic block. Furthermore, in comparison with the short copolymers, the layer thickness of the long copolymers is substantially higher. Upon degradation of the PL block, the adsorbed amount is found to decrease and approach that of the corresponding PEO homopolymer. Protein rejection studies indicate that the adsorption of fibrinogen is inhibited by copolymer preadsorption. The protein rejection is enhanced with increasing surface coverage of the preadsorbed copolymer, but largely independent of the length of the PL block and the PEO block. For all polymers investigated, essentially complete protein rejection is obtained above a critical surface coverage that is significantly lower than the saturation coverage of the copolymers. Removing the copolymer from bulk solution after preadsorption causes a partial desorption, resulting in reduced protein rejection. However, the protein rejection capacity with and without copolymer in the bulk solution is found to be similar at a given surface coverage. Contrary to the behavior of the intact copolymers, fibrinogen adsorption is found to be significant at surfaces pretreated with an extensively degraded copolymer and, in fact, quantitatively comparable to that at the hydrophobic surface in the absence of preadsorption. This finding, together with that of the effect of the copolymer composition on protein rejection, suggests that an efficient protein rejection is maintained until only a few L units remain in the copolymer, i.e., until nearly completed degradation. Copyright 2000 Academic Press.  相似文献   

11.
The interaction between a phospholipid stabilized triglyceride emulsion and a hydrophilic silica surface has been studied at varying pH and electrolyte content using ellipsometry. The adsorbed amount decreases with pH and increases with increasing electrolyte content in the emulsion, and this can be rationalized on the basis of the electrostatic interaction between the emulsion droplet and the surface. The layer thickness, however, is essentially independent of these parameters.

In addition, the emulsion has been studied during turbulent shear conditions (applied mechanical stress), with the same variation of pH and electrolyte as in the adsorption experiments. A decrease in pH and an increase in electrolyte content, decreasing the repulsive interaction between the droplets, leads to a deterioration in emulsion stability with time.  相似文献   

12.
A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown by transmission electron microscopy with a diameter of 5-15 nm and a length of up to 1 microm. Calculations, using the Poisson-Boltzmann equation, showed that the surface potential was between 200 and 250 mV, depending on the pH, the salt concentration, and the size of the fibrils. They also showed that the carboxyl groups on the surface of the nanofibrils are not fully dissociated until the pH has reached pH = approximately 10 in deionized water. Calculations of the interaction between the fibrils using the Derjaguin-Landau-Verwey-Overbeek theory and assuming a cylindrical geometry indicated that there is a large electrostatic repulsion between these fibrils, provided the carboxyl groups are dissociated. If the pH is too low and/or the salt concentration is too high, there will be a large attraction between the fibrils, leading to a rapid aggregation of the fibrils. It is also possible to form polyelectrolyte multilayers (PEMs) by combining different types of polyelectrolytes and microfibrillated cellulose (MFC). In this study, silicon oxide surfaces were first treated with cationic polyelectrolytes before the surfaces were exposed to MFC. The build-up of the layers was monitored with ellipsometry, and they show that it is possible to form very well-defined layers by combinations of MFC and different types of polyelectrolytes and different ionic strengths of the solutions during the adsorption of the polyelectrolyte. A polyelectrolyte with a three-dimensional structure leads to the build-up of thick layers of MFC, whereas the use of a highly charged linear polyelectrolyte leads to the formation of thinner layers of MFC. An increase in the salt concentration during the adsorption of the polyelectrolyte results in the formation of thicker layers of MFC, indicating that the structure of the adsorbed polyelectrolyte has a large influence on the formation of the MFC layer. The films of polyelectrolytes and MFC were so smooth and well-defined that they showed clearly different interference colors, depending on the film thickness. A comparison between the thickness of the films, as measured with ellipsometry, and the thickness estimated from their colors showed good agreement, assuming that the films consisted mainly of solid cellulose with a refractive index of 1.53. Carboxymethylated MFC is thus a new type of nanomaterial that can be combined with oppositely charged polyelectrolytes to form well-defined layers that may be used to form, for example, new types of sensor materials.  相似文献   

13.
The effect of a cationic polyelectrolyte, PCMA, on the forces between two cellulose surfaces and between one cellulose surface and one mica surface has been studied using the interferometric surface force apparatus (SFA). The cellulose surfaces were prepared by Langmuir-Blodgett deposition of trimethylsilyl cellulose onto hydrophobized mica. Prior to measurements the surfaces were desilylated to obtain pure cellulose. Introduction of a cationic polyelectrolyte into the solution drastically changed the interactions between the cellulose layers. It was found that the cationic polyelectrolyte does adsorb onto the cellulose surface, although the adsorbed amount is low. The adsorbed layer is very thin, as expected at a low electrolyte concentration. Before the adsorption has reached equilibrium, when only some polyelectrolyte had adsorbed, the adhesion between the surfaces was high, and it was noted that the cellulose layer was damaged on separation. After a longer adsorption time an electrostatic repulsion and no adhesion were observed between the polyelectrolyte-coated cellulose surfaces. An electrostatic repulsion was observed between cellulose and mica. When cationic polyelectrolyte was introduced to the system it overcompensated the charges on both surfaces, and the range and magnitude of the double-layer force was higher than without polyelectrolyte. The relevance of the results to flocculation mechanism and efficiency in cellulose systems is discussed. Copyright 2000 Academic Press.  相似文献   

14.
A theory has been developed for the adsorption of polyelectrolytes on charged interfaces from an aqueous salt solution. This adsorption is determined by the electrical charge density of the polyelectrolyte, the adsorption energy, the salt concentration, the molecular weight, solubility, flexibility, and concentration of polymer. The theory relates these parameters to the properties of the adsorbed polymer layer, i.e., the amount of polymer adsorbed, the fraction of the adsorbent interface covered, the fraction of the segments actually adsorbed on the interface versus the fraction of the segments in the dangling loops, the final surface charge density, and the thickness of the adsorbed layer. As polyelectrolyte adsorption should resemble nonionic polymer adsorption at high ionic strength of the solution or low charge density on the polymer, this work is an extension of the nonionic polymer adsorption theory to polyelectrolyte adsorption. The following effects are taken into account: (a) the conformational change upon adsorption of a coil in solution into a sequence of adsorbed trains interconnected by loops dangling in solution; (b) the interactions of the adsorbed trains with the interface and with each other; (c) the interaction of the dangling loops with the solvent; (d) the change in surface charge density of the adsorbent due to adsorption of charged trains and the accompanying changes in the electrical double layer which contains “small” ions as well as charged loops; (e) the (induced) dipole interaction of the adsorbed trains with the charged adsorbent interface. The theory is worked out for low potentials (Debye—Hückel approximation); in Appendix B an outline of a more complete treatment is given. The predicted adsorption isotherms have the experimentally observed high-affinity character. A relation between the adsorption energy, the surface charge density on the adsorbent, the degree of dissociation of the polymer, and the salt concentration predicts the conditions under which no adsorption will occur. For adsorbent and polymer carrying the same type of charge (both positive or both negative) the adsorption is predicted to decrease with increased charge density on polymer or adsorbent and to increase with salt concentration. If adsorbent and polymer carry different type charges, the adsorption as a function of the degree of dissociation, α, goes through a maximum at a relatively low value of α and, depending on the adsorption energy, an increase in the salt concentration can then increase or decrease the adsorption. At finite polymer concentration in solution the number of adsorbed segments and the fraction of the interface covered practically do not change with an increase in polymer concentration, whereas the total number of polymer molecules adsorbed increases slightly, as does the average fraction of segments in loops. The experimental results for polyelectrolyte adsorption have been reviewed in general and, as far as data are available, the predictions of the theory seem to follow the experimentally observed trends quite closely, except for the thickness of the adsorbed layer. This thickness is systematically overestimated by the theory and two reasons for this are given. The theoretical model implies a not too low ionic strength of the solution. Extrapolation of results to solutions of very low ionic strength is not warranted.  相似文献   

15.
The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.  相似文献   

16.
A single layer of poly(allylamine) with a covalently attached osmium pyridine-bipyridine complex adsorbed onto a Au surface modified by mercaptopropanesulfonate has been studied theoretically with a molecular approach and experimentally by cyclic voltammetry. These investigations have been carried out at different pHs and ionic strengths of the electrolyte solution in contact with the redox polyelectrolyte modified electrode. The theory predicts strong coupling between the acid-base and redox equilibria, particularly for low ionic strength, pH close to the pKa, and high concentration of redox sites. The coupling leads to a decrease in the peak potential at pH values above the apparent pKa of the weak polyelectrolyte, in good agreement with the experimental pH dependence at 4 mM NaNO3. Theoretical calculations suggest that the inflection point in the peak position versus pH curves can be used to estimate the apparent pKa of the amino groups in the polymer. Comparison of the apparent pKa for PAH-Os in the film with that of poly(allylamine) reported in the literature shows that the underlying charged thiol strongly influences charge regulation in the film. A systematic study of the film thickness and the degree of protonation in sulfonate and amino groups for solutions of different pH and ionic strength shows the coupling between the different interactions. It is found that the variation of the film properties has a non-monotonic dependence on bulk pH and salt concentration. For example, the film thickness shows a maximum with electrolyte ionic strength, whose origin is attributed to the balance between electrostatic amino-amino repulsions and amino-sulfonate attractions.  相似文献   

17.
Bovine submaxillary mucin (BSM) and chitosan were used to build layer-by-layer structures on solid substrates. The build-up was monitored using in situ ellipsometry to obtain time resolved values of the thickness and adsorbed amount. Additionally surface morphology during build-up was studied by atomic force microscopy (AFM). It was found that the adsorbed amount of the film increases approximately linearly with each deposition cycle on hydrophobized silica whereas construction on silica was found not to be possible at the experimental conditions used. We conclude that sufficient amount of the first mucin layer is crucial for the subsequent multilayer formation. The complex build-up kinetics on hydrophobized silica is characterized by adsorption and redissolution processes and the overall growth is the sum of both processes. AFM imaging on hydrophobized silica also confirmed the presence of redissolution processes and chitosan addition led to a reduction both in the number of surface aggregates and in the roughness of the surface. The present work also shows that by adjusting the relative concentrations of the polyelectrolytes it is possible to change the growth rate considerably. The final structures after deposition of 8 bilayers were found to have a high content of water and film stability test revealed that a substantial amount dissolves when increasing electrolyte concentration or pH of the ambient solution. Human mucin from saliva (MUC5B) was also used to create multilayers with chitosan on hydrophobized silica and it was revealed that no redissolution appears to be present in this system.  相似文献   

18.
In order to produce silica/polyelectrolyte hybrid materials the adsorption of the polyelectrolyte poly(vinyl formamide-co-vinyl amine), P(VFA-co-VAm) was investigated. The adsorption of the P(VFA-co-VAm) from an aqueous solution onto silica surface is strongly influenced by the pH value and ionic strength of the aqueous solution, as well as the concentration of polyelectrolyte. The adsorption of the positively charged P(VFA-co-VAm) molecules on the negatively charged silica particles offers a way to control the surface charge properties of the formed hybrid material. Changes in surface charges during the polyelectrolyte adsorption were studied by potentiometric titration and electrokinetic measurements. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte and its chemical structure. The stability of the adsorbed P(VFA-co-VAm) was investigated by extraction experiments and streaming potential measurements. It was shown, that polyelectrolyte layer is instable in an acidic environment. At a low pH value a high number of amino groups are protonated that increases the solubility of the polyelectrolyte chains. The solvatation process is able to overcompensate the attractive electrostatic forces fixing the polyelectrolyte molecules on the substrate material surface. Hence, the polyelectrolyte layer partially undergoes dissolving process.  相似文献   

19.
The solution behavior of the polymeric surfactant Pluronic F127 (PEO(99)PPO(65)PEO(99)) and its adsorption behavior on aqueous-silica and aqueous-air interfaces, as well as the disjoining pressure isotherms of asymmetric films (silica/aqueous film/air) containing F127, are studied. The interfacial properties of adsorbed F127 layers (the adsorbed amount Gamma and the thickness h) as well as the aqueous wetting film properties [film thickness (h) and refractive indexes] were studied via ellipsometry. The solution properties of F127 were investigated using surface tensiometry and light scattering. The interactions between the air-water and silica-water interfaces were measured with a thin film pressure balance technique (TFB) and interpreted in terms of disjoining pressure as a function of the film thickness. The relations between the behaviors of the asymmetric films, adsorption at aqueous air, and aqueous silica interfaces and the solution behavior of the polymeric surfactant are discussed. Special attention is paid to the influence of the concentrations of F127 and NaCl. Addition of electrolyte lowers the critical micelle concentration, diminishes adsorption on silica, and increases the thickness of the asymmetric film.  相似文献   

20.
The association between low-charge-density polyelectrolytes adsorbed onto negatively charged surfaces (mica and silica) and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated using surface force measurements, ellipsometry, and XPS. All three techniques show that the polyelectrolyte desorbs when the SDS concentration is high enough. The XPS study indicates that desorption starts at a SDS concentration of ca. 0.1 unit of cmc (8x10(-4) M) and that the desorption proceeds progressively as the SDS concentration is increased. Surface force measurements show that for the polyelectrolyte studied here, having 1% of the segments charged, the desorption proceeds without any swelling of the adsorbed layer. This behavior differs from that observed when polyelectrolytes of greater charge density are used. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号