首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of (t)BuNTe(mu-N(t)Bu)(2)TeN(t)Bu (1) with 1 or 2 equiv of (C(6)F(5))(3)B.H(2)O results in the successive replacement of terminal imido groups by oxo ligands to give the telluroxane-Lewis acid adducts (C(6)F(5))(3)B.OTe(mu-N(t)Bu)(2)TeN(t)Bu (2) and [(C(6)F(5))(3)B.OTe(mu-N(t)Bu)(2)Te(mu-O)](2) (3), which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. The Te=O distance in 2 is 1.870(2) A. The di-adduct 3 involves the association of four (t)()BuNTeO monomers to give a tetramer in which both terminal Te=O groups [d(TeO) = 1.866(3) A] are coordinated to B(C(6)F(5))(3). The central Te(2)O(2) ring in 3 is distinctly unsymmetrical [d(TeO) = 1.912(3) and 2.088(2) A]. The X-ray structure of (C(6)F(5))(3)B.NH(2)(t)()Bu (4), the byproduct of these hydrolysis reactions, is also reported. The geometries and energies of tellurium(IV) diimides and imido telluroxanes were determined using quantum chemical calculations. The calculated energies for the reactions E(NR)(2) + Te(NR)(2) (E = S, Se, Te; R = H, Me, (t)Bu, SiMe(3)) confirm that cyclodimerization of tellurium(IV) diimides is strongly exothermic. In the mixed-chalcogen systems, the cycloaddition is energetically favorable for the Se/Te combination. The calculated energies for the further oligomerization of the dimers XE(mu-NMe)(2)EX (E = Se, Te; X = NMe, O) indicate that the formation of tetramers is strongly exothermic for the tellurium systems but endothermic (X = NMe) or thermoneutral (X = O) for the selenium systems, consistent with experimental observations.  相似文献   

2.
Syntheses and Crystal Structure Analyses of [SbI3(SbMe3)(THF)]2 and [Li(THF)4]2[Bi2Cl8(THF)2] The reaction of Me3Sb with SbI3 in tetrahydrofuran (THF) gives [SbI3(SbMe3)(THF)]2 ( 1 ). [Li(THF)4]2[Bi2Cl8(THF)2] ( 2 ) is formed by reaction of LiCl and BiCl3 in tetrahydrofuran. The structures of ( 1 ) and ( 2 ) have been determined by X-ray diffractometry. Both structures contain centrosymmetric dimers with the geometry of edge sharing octahedra.  相似文献   

3.
The reaction of copper(I) iodide with tri-m-tolylphosphine (m-tolyl(3)P) in acetonitrile yielded the cluster [Cu(6)(mu2-I)(mu3-I)4(mu4-I)(m-tolyl(3)P)4(CH(3)CN)2] (1), with a bicapped adamantoid geometry. In this compound, four Cu atoms are coordinated to four terminally bonded m-tolyl(3)P ligands, two Cu atoms are bonded to two CH(3)CN ligands, and iodide ligands have mu2-I, mu3-I, and mu4-I bonding modes. This compound has four CuI(3)P and two CuI(3)N cores, and geometry around each Cu center is distorted tetrahedral.The polarizable iodide ligand and the position of the methyl group in the phenyl ring attached to the P atom appear to have played the pivotal role in the formation of monomeric bicapped adamantoid geometry, which is unique in copper chemistry.  相似文献   

4.
The reaction of anhydrous YCl3 with an equimolar amount of lithium N,N'-diisopropyl-N' '-bis(trimethylsilyl)guanidinate, Li[(Me3Si)2NC(Ni-Pr)2], in tetrahydrofuran (THF) afforded the monomeric monoguanidinate dichloro complex {(Me3Si)2NC(Ni-Pr)2}YCl2(THF)2 (1). Alkylation of complex 1 with 2 equiv of LiCH2SiMe3 in hexane at 0 degrees C yielded the monomeric salt-free dialkyl complex {(Me3Si)2NC(Ni-Pr)2}Y(CH2SiMe3)2(THF)2 (2). The bis(triethylborohydride) complex [(Me3Si)2NC(Ni-Pr)2]Y[(mu-H)(mu-Et)2BEt]2(THF) (5) was prepared by the reaction of complex 1 with 2 equiv of LiBEt3H in a toluene-THF mixture at 0 degrees C. The complexes 1, 2, and 5 were structurally characterized. Complex 2 as well as the systems 2-Ph3B, 2-Ph3B-MAO, and 1-MAO (MAO = methylaluminoxanes) in toluene were inactive in ethylene polymerization, while the product obtained in situ from the reaction of complex 2 with a 2-fold molar excess of PhSiH3 in toluene polymerized ethylene with moderate activity.  相似文献   

5.
Chen X  Huang X  Li J 《Inorganic chemistry》2001,40(6):1341-1346
Three novel metal polytellurides Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3) (I), [Zn(en)(3)](4)In(16)(Te(2))(4)(Te(3))Te(22) (II), and K(2)Cu(2)(Te(2))(Te(3)) (III) have been prepared by solvothermal reactions in superheated ethylenediamine at 160 degrees C. Their crystal structures have been determined by single-crystal X-ray diffraction techniques. Crystal data for I: space group Pnma, a = 9.803(2) A, b = 9.124(2) A, c = 34.714(7) A, Z = 4. Crystal data for II: space group C2/c, a = 36.814(7) A, b = 16.908(3) A, c = 25.302(5) A, beta = 128.46(3) degrees, Z = 4. Crystal data for III: space group Cmcm, a = 11.386(2) A, b = 7.756(2) A, c = 11.985(2) A, Z = 4. The crystal structure of I consists of 1D infinite ribbons of [Hg(5)(Te(2))(2)(Te(3))(2)Te(3)](4-), which are composed of tetrahedral HgTe(4) and trigonal HgTe(3) units connected through the bridging Te(2-), (Te(2))(2-), and (Te(3))(2-) ligands. II is a layered compound containing InTe(4) tetrahedra that share corners and edges via Te, Te(2), and Te(3) units to form a 2D slab that contains relatively large voids. The [Zn(en)(3)](2+) template cations are filled in these voids and between the slabs. The primary building blocks of III are CuTe(4) tetrahedra that are linked by intralayer (Te(3))(2-) and interlayer (Te(2))(2-) units to form a 3D network with open channels that are occupied by the K(+) cations. All three compounds are rare polytelluride products of solvothermal reactions that contain both Te(2) and Te(3) fragments with unusual metal-tellurium coordination.  相似文献   

6.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

7.
The hydrolysis of [ClP(mu-NtBu)]2 with H2O-Et3N in thf, followed by in situ lithiation with nBuLi gives the Li13 cage [[[O-P(mu-NtBu)]2Li2]3(LiCl)6Li(Cl/OnBu)0.5(thf)7], containing a [O-P(mu-NtBu)]2(2-) dianion that is isoelectronic with ligands of the type [(RN)P(mu-NR)]2(2-).  相似文献   

8.
The structures of the host-guest complexes [[[[P(mu-NtBu)]2(mu-NH)]5]I]-.[Li(thf)4]+ [2.I[Li(thf)4]] and [[[P(mu-NtBu)]2(mu-NH)]5].HBr.THF (2.HBr.THF) show that increased distortion of the framework of the pentameric macrocycle [[[P(mu-NtBu)]2(mu-NH)]5] (2) occurs with the larger halide ions. Theoretical studies show that the thermodynamic stabilities of the model host-guest anions [2.X]- (X=Cl, Br, I) are in the order Cl- approximately Br->I-, that is, the reverse of the templating trend observed experimentally. These studies support the view that the selection of the pentamer 2 over the tetramer [[[P(mu-NtBu)]2(mu-NH)]4] (1) is kinetically controlled, a conclusion which is also consistent with the previous observation that the frameworks of 1 and 2 are not in dynamic equilibrium with each other.  相似文献   

9.
Five-coordinate and six-coordinate 2-methyl-2-propanethiolato complexes of zirconium, [Li(DME)(3)][Zr(SCMe(3))(5)] (1) and [(THF)Li](2)Zr(SCMe(3))(6) (2), were obtained from the ZrCl(4)/LiSCMe(3) reaction system. The control of the Zr coordination number, by the ether ligands, THF or DME, bound to Li, is demonstrated by the conversion of 2 into 1 upon dissolution in DME. 1 and 2 were crystallographically characterized. The structures are extensively disordered. Crystal data follow: 1, hexagonal P6(3)/m, a = b = 12.496(3) ?, c = 17.561(9) ?, Z = 2, V = 2375(1) ?(3), R = 5.0%, R(w) = 6.8%; 2, trigonal R32, a = b = 11.813(3) ?, c = 28.37(1) ?, Z = 3, V = 3428(1) ?(3), R = 5.2%, R(w) = 6.4%.  相似文献   

10.
The reaction of plutonium(IV) in aqueous nitric acid with tetra-n-butylammonium nitrate leads to the immediate precipitation of [N(n-Bu)(4)](2)[Pu(NO(3))(6)] (1) in high yield. The analogous reaction in HCl with tetra-n-butylammonium chloride gives [N(n-Bu)(4)](2)[PuCl(6)] (2). Both 1 and 2 are soluble in a range of organic solvents and have been characterized by single-crystal X-ray diffraction, IR spectroscopy, and solid- and solution-phase vis-near-IR spectroscopy. 1 and 2 provide facile synthetic entry routes to study plutonium(IV) ligand complexation reactions in organic solvent media under both air/moisture-stable and -sensitive conditions.  相似文献   

11.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

12.
Reaction of potassium diphenylphosphide with elemental selenium is shown to give [K(Se(2)PPh(2))(THF)(2)](2) 1, which further reacts with InCl(3) to yield [In(Se(2)PPh(2))(3)] 2. Crystallization of 2 from either THF or PhMe gave 2.THF or 2.PhMe, respectively, both of which form loosely linked dimers in the solid state via Se...Se intermolecular van der Waals interactions. Decomposition of 2 has been studied by TGA.  相似文献   

13.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

14.
The reaction of SeCl2 with tert-butylamine in various molar ratios in THF at -78 degrees C has been investigated by 77Se NMR spectroscopy. In addition to the known Se-N heterocycles Se6(NtBu)2 (1) and Se9(NtBu)6 (2), the acyclic imidoselenium(II) dichlorides ClSe[N(tBu)Se]nCl (4, n = 1; 5, n = 2) and two new cyclic selenium imides [Se3(NtBu)2]n (3, n = 1 or 2) and Se3(NtBu)3 (6) have been isolated and identified. An X-ray analysis shows that 6 is a six-membered ring in a chair conformation with magnitude of d(Se-N) = 1.833 A. Crystal data: 6, trigonal, P3c1, a = 9.8660(3) A, c = 20.8427(7) A, V = 1757.0(1) A3, Z = 6. The 1H, 13C, and 77Se NMR data for 1-6 are reported, and some reassignments of earlier literature data for 1-3 (n = 1) are made. The decomposition of tBuN=Se=NtBu at 20 degrees C in toluene was monitored by 77Se NMR. The major products are 6 and 3. The Se(IV)-N systems tBuNSe(mu-NtBu)2E (7, E = SO2; 8, E = SeO) were prepared by the reaction of a mixture of SeCl4 and excess tBuNH2 with SO2Cl2 or SeOCl2, respectively. Compound 8 is also generated by the cycloaddition reaction of tBuNSeNtBu with tBuNSeO. Both 7 and 8 consist of slightly puckered four-membered rings. The mean terminal and bridging Se-N distances in 7 are 1.665(2) and 1.948(2) A, respectively. The corresponding values for 8 are 1.687(4) and 1.900(4) A, and d(Se=O) = 1.628(4) A. Crystal data: 7, monoclinic, P2(1)/c, a = 18.669(4) A, b = 12.329(2) A, c = 16.463(3) A, beta = 115.56(3) degrees, V = 3418.4(11) A3, Z = 4; 8, triclinic, P1, a = 6.372(1) A, b = 9.926(2) A, c = 14.034(3) A, alpha = 99.320(3) A, beta = 95.764(3) A, gamma = 103.876(3) A, V = 841.3(3) A3, Z = 2.  相似文献   

15.
Phosphoraneiminato Complexes of Titanium(IV). Crystal Structures of [TiCl3(NPEt3)]2, [TiCl3(NPEt3)(THF)2], and [TiCl4{Me2Si(NPEt3)2}] [TiCl3(NPEt3)]2 ( 1 ) is formed from titanium(IV) chloride and the silylated phosphaneimine Me3SiNPEt3 in dichloromethane as reddish-brown, moisture-sensitive crystals. According to the crystal structure analysis these crystals show centrosymmetric Ti2N2 four-membered rings with Ti–N distances of 184.7 and 210.3 pm. With tetrahydrofurane 1 forms yellow, moisture sensitive crystals of the solvate [TiCl3(NPEt3)(THF)2] ( 2 ), in which the titanium atom is octahedrally coordinated. The THF molecule which is in trans position to the phosporaneiminato ligand realizes but a very weak Ti–O bond of 238.0 pm, the cis THF molecule shows a Ti–O distance of 213.7 pm. With 173.4 pm along with a TiNP bond angle of 160.0° the TiN distance is very short. The bis(phosphaneimine) complex [TiCl4{Me2Si(NPEt3)2}] ( 3 ) is formed as colourless crystals in low yield in the reaction of titanium(IV) chloride with Me3SiNPEt3 and trimethylcyclopentadienylsilane. In 3 the titanium atom is surrounded by four chlorine atoms in a distorted octahedral fashion and by the two N atoms of the Me2Si(NPEt3)2 molecule with TiN distances of 205.6 pm.  相似文献   

16.
A reinvestigation of the redox chemistry of [Rh7(CO)16]3- resulted in the finding of new alternative syntheses for a series of previously reported Rh-centered carbonyl clusters, i.e., [H4-nRh14(CO)25]n- (n = 3 and 4) and [Rh17(CO)30]3-, as well as new species such as a different isomer of [Rh15(CO)27]3-, the carbonyl-substituted [Rh15(CO)25(MeCN)2]3-, and the conjuncto [Rh17(CO)37]3- clusters. All of the above clusters are suggested to derive from oxidation of [Rh7(CO)16]3- with H+, arising from dissociation either of [M(H2O)n]2+ aquo complexes or nonoxidizing acids. The nature of the previously reported species has been confirmed by IR, electrospray ionization mass spectrometry, and complete X-ray diffraction studies. Only the molecular structures of the new clusters are reported in some details. The ready conversion of [Rh7(CO)16]3- in [HRh14(CO)25]3- upon oxidation has been confirmed by electrochemical techniques. In addition, electrochemical studies point out that the close-packed [H3Rh13(CO)24]2- dianion undergoes a reversible monoelectronic reduction followed by an irreversible reduction. The irreversibility of the second reduction is probably a consequence of H2 elimination from a purported [H3Rh13(CO)24]4- species. Conversely, the body-centered-cubic [HRh14(CO)25]3- and [Rh15(CO)27]3- trianions display several well-defined redox changes with features of electrochemical reversibility, even at low scan rate. The major conclusion of this work is that mild experimental conditions and a tailored oxidizing reagent may enable more selective conversion of [Rh7(CO)16]3- into a higher-nuclearity rhodium carbonyl cluster. It is also shown that isonuclear Rh clusters may display isomeric metal frameworks [i.e., [Rh15(CO)27]3-], as well as almost identical metal frames stabilized by a different number of carbonyl groups [i.e., [Rh15(CO)27]3- and [Rh15(CO)30]3-]. Other isonuclear Rh clusters stabilized by a different number of CO ligands more expectedly exhibit completely different metal geometries [i.e., [Rh17(CO)30]3- and [Rh17(CO)37]3-]. The first pair of isonuclear and isoskeletal clusters is particularly astonishing in that [Rh15(CO)30]3- features six valence electrons more than [Rh15(CO)27]3-. Finally, the electrochemical studies seem to suggest that interstitial Rh atoms are less effective than Ni and Pt interstitial atoms in promoting redox properties and inducing molecular capacitor behavior in carbonyl clusters.  相似文献   

17.
The salts [18-crown-6-K](4)[Sn(4)Se(10)].5en and [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF were isolated upon addition of THF to the ethylenediamine (en) extracts of the alloys KSn(0.90)Se(1.93) and K(4)Sn(4)Te(10) that had been extracted in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane). The Sn(4)Te(10)(4-) anion has been structurally characterized for the first time by a single-crystal X-ray diffraction study of [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF: P2(1)/n, a = 22.420(5) A, b = 19.570(4) A, c = 24.680(5) A, beta = 96.90(3)(o), Z = 4, and R(1) = 0.0468 at -183 degrees C. In addition to Si(4)Te(10)(4-) and Ge(4)Te(10)(4-), the Sn(4)Te(10)(4-) anion represents the only other known group 14 adamantanoid telluride. The X-ray crystal structure determination of the related [18-crown-6-K](4)[Sn(4)Se(10)].5en salt has also been determined: P2(1)/n, a = 22.003(2) A, b = 18.966(2) A, c = 24.393(2) A, beta = 97.548(8)(o), Z = 4, and R(1) = 0.0843 at -123 degrees C. The anion geometries are of the adamantanoid type where the Sn(IV) atoms occupy the bridgehead positions and the chalcogen atoms occupy the bridging and terminal sites. The energy minimized geometries of Sn(4)Ch(10)(4-) have also been determined using density functional theory (DFT). Mayer bond order analyses, Mayer valencies, and empirical bond valencies indicate that the terminal Sn-Ch bonds have significant multiple bond character, with the terminal Sn-Se bond having more multiple bond character than the terminal Sn-Te bond. The vibrational frequencies of the Sn(4)Se(10)(4-) and Sn(4)Te(10)(4-) anions have been calculated using DFT methods, allowing the Raman spectrum of Sn(4)Se(10)(4-) to be fully assigned.  相似文献   

18.
Organometallic Compounds of the Lanthanides. 88. Monomeric Lanthanide(III) Amides: Synthesis and X-Ray Crystal Structure of [Nd{N(C6H5)(SiMe3)}3(THF)], [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2,6)(SiMe3)}2(THF)], and [ClNd{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] A series of lanthanide(III) amides [Ln{N(C6H5) · (SiMe3)}3(THF)x] [Ln = Y ( 1 ), La ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Tb ( 6 ), Er ( 8 ), Yb ( 9 ), Lu ( 10 )] could be prepared by the reaction of lanthanide trichlorides, LnCl3, with LiN(C6H5)(SiMe3). Treatment of NdCl3(THF)2 and LuCl3(THF)3 with the lithium salts of the bulky amides [N(C6H3R2-2,6)(SiMe3)]? (R = Me, iso-Pr) results in the formation of the lanthanide diamides [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2, 6)(SiMe3)}2(THF)] ( 11 ) and [ClLn{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] [Ln = Nd ( 12 ), Lu ( 13 )], respectively. The 1H- and 13C-NMR and mass spectra of the new compounds as well as the X-ray crystal structures of the neodymium derivatives 3 , 11 and 12 are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号