首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A method for the determination of trace Cr(III) in aqueous solution by solid-phase microextraction (SPME) coupled with gas chromatography (GC)-flame photometric detection (FPD) was developed. Aqueous Cr(III) was first converted to the volatile chromium trifluoroacetylacetonate (Cr(tfa)3) by derivatization with 1,1,1-trifluoroacetylacetone (Htfa), followed by SPME extraction using a polyimide-coated silica fiber. The distribution constants (K) of derivatized cis- and trans-Cr(tfa)3 between the polyimide phase and aqueous phase were 2012 and 2214, respectively. The two Cr(tfa)3 isomers extracted can be efficiently separated by a DB-210 GC column within 9 min. Selective detection of Cr was performed by a FPD equipped with a 385-nm long-pass filter. Linearity (r> 0.99) over the concentration range 5-300 ng ml(-1) Cr was obtained and the limit of detection was 2 ng ml(-1) Cr. The relative standard deviation was 7% at 10 ng ml(-1) Cr (n = 5). Applicability of this method to water analysis was tested by analyzing the chromium content in a reference standard water sample and an industrial effluent.  相似文献   

2.
Trace amount of chromium was first converted quantitatively to volatile chromium chelates such as chromium(III) acetylacetonate, Cr(acac)1, chromium(III) trifluoracetylacetonate, Cr(tfa)3, and chromium(III) hexafluoroacetylacetonate, Cr(hfa)3, and the chelate solution was then analyzed by gas chromatography. It was found that Cr(tfa)3 is the most suitable chemical form for this purpose. The method was profitably applied to the determination of chromium(III) incorporated in the six kinds of commerical products of potassium Chromate.  相似文献   

3.
A simple and sensitive method has been developed for species selective determination of chromium(III) and chromium(VI) in water by electrothermal atomic absorption spectrometry. The procedure is based on selective absorption of Cr(III) on a cellulose micro column (pH 11, 0.5 mol L(-1) NaCl). Total chromium was subsequently determined after appropriate reduction of Cr(VI) to Cr(III). Recoveries of more than 97% were found. A concentration factor of 100 was achieved. The relative standard deviations (n=10) at the 40 ng L(-1) level for chromium(III) and chromium(VI) were 2.3% and 1.8% and corresponding limits of detection (based on 36) were 1.8 ng L(-1) and 5.1 ng L(-1), respectively. No interference effects have been observed from other investigated species and the method has been successfully applied to natural water samples.  相似文献   

4.
Wen B  Shan XQ  Lian J 《Talanta》2002,56(4):681-687
A rapid and simple method has been developed for the separation of chromium (III) and Cr(VI) species in river and reservoir water. Chromium (III) can be chelated with 8-hydroxyquinoline immobilized polyacrylonitrile (PAN) fiber, whereas Cr(VI) cannot. Chelated Cr(III) can be eluted with 2 mol l(-1) HCl-0.1 mol l(-1) HNO(3). Cr(VI) in the filtrate and Cr(III) in the eluant were determined by inductively coupled plasma mass spectrometry. The effect of pH, sample flow rate, eluant type and its volume on the concentration effectiveness of Cr(III) was investigated. The recommended method has been applied for the separation and determination of Cr(III) and Cr(VI) in river and reservoir water. The results indicated that the recovery of each individual Cr species ranged from 96 to 107% and the R.S.D. were found to be <10% at the level of ng ml(-1). The effect of HNO(3) added in the sampling procedure was also evaluated.  相似文献   

5.
A flow injection method is proposed for the determination of nanogram amounts of chromium(III) using a pyrogallol chemiluminescence system. It is based on its catalytic effect on the oxidation of pyrogallol with periodate at a neutral medium. The addition of 3-(N-morpholino)propanesulphonic acid to the reaction system increased the chemiluminescence signal for chromium(III). The present method allows the determination of 5-100ng/ml of chromium(III). The relative standard deviation of 2.2% (n = 10) was obtained at 20 ng/ml of chromium(III) and the detection limit (signal-to-noise ratio = 2) was 1 ng/ml with the sampling frequency of 25/hr.  相似文献   

6.
Capillary GC and HPLC of metal chelates of pentamethylene dithiocarbamate were examined. Copper(II), nickel(II), cobalt(III), iron(III), manganese(II) and chromium(III) chelates formed in slightly acidic media (pH 5) were extracted in methyl isobutyl ketone or chloroform. Capillary GC elution and separation was carried out on methylsilicone DB-1 column (25 m x 0.2 mm I.D.) with film thickness 0.25 microm. Electron-capture detection was used. Elution was carried at initial column temperature 200 degrees C with an increment at a rate of 5 degrees C/min up to 250 degrees C and maximum temperature was maintained for 10 min. Symmetrical peaks with baseline separation were obtained with the metal chelates investigated with linear calibration range between 5 and 25 microg/ml for each metal ion and detection limits in the range of 0.5-6.0 microg/ml corresponding to 27-333 pg of metal ion reaching to the detector. HPLC separation was carried out from LiChrosorb ODS, 5 microm column and complexes eluted with methanol-water-1 mM sodium acetate (70:28:2, v/v) with a flow-rate of 1.2 ml/ml. UV detection was at 260 nm. The detection limits obtained were in the range 2-6 microg/ml. The methods were applied to the determination of metal ions in canal water and coal samples with RSD values within 4.15%. The results when compared with a standard flame atomic absorption spectrophotometric method and revealed no significant difference.  相似文献   

7.
Zhang N  Suleiman JS  He M  Hu B 《Talanta》2008,75(2):536-543
A new chromium(III)-imprinted 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS)-functionalized silica gel sorbent was synthesized by a surface imprinting technique and was employed as a selective solid-phase extraction material for speciation analysis of chromium in environmental water samples prior to its determination by inductively coupled plasma mass spectrometry (ICP-MS). The prepared Cr(III)-imprinted silica gel shows the selectivity coefficient of more than 700 for Cr(III) in the presence of Mn(II). The static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cr(III) were 30.5 mg g(-1) and 13.4 mg g(-1). It was also found that Cr(VI) could be adsorbed at low pH by the prepared imprinted silica gel, and this finding makes it feasible to enrich and determine Cr(VI) at low pH without adding reducing reagents. The imprinted silica gel sorbent offered a fast kinetics for the adsorption and desorption of both chromium species. Under the optimized conditions, the detection limits of 4.43 pg mL(-1) and 8.30 pg mL(-1) with the relative standard deviations (R.S.D.s) of 4.44% and 4.41% (C=0.5 ng mL(-1), n=7) for Cr(III) and Cr(VI) were obtained, respectively. The proposed method was successfully applied to the speciation of trace chromium in environmental water samples. To validate the proposed method, two certified reference materials were analyzed and the determined values were in a good agreement with the certified values. The developed method is rapid, selective, sensitive and applicable for the speciation of trace chromium in environmental water samples.  相似文献   

8.
Dibenzyldithiocarbamic acid (DBDC) exhibits the ability to speciate between chromium(VI) and chromium(III), since only the chromium(VI) will form complexes with DBDC. The complex is then extracted into an organic solvent and assayed using an ultraviolet-visible (UV-VIS) spectrophotometer at 498.8 nm. Using 250 ml of aqueous sample detection limits less than 1 ng/ml are possible, while the linear range extends to 500 gmg/ml when working at 498.8 nm. Oxidation of the chromium(III) to chromium (VI) using cerium (IV) enables the determination of total chromium and subsequently the chromium (III) in solution. Evaluation of the method with a standard reference material produced only 4.81 part per thousand error in the determination of chromium(VI).  相似文献   

9.
Zhu G  Li S 《The Analyst》2001,126(8):1453-1455
A novel method for the separation and preconcentration of Cr(III)/Cr(VI) with Lemna minor and determination by slurry atomization electrothermal atomic absorption spectrometry (ETAAS) was developed. A sample solution was added to a polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 1.0, stirred for 8 min for selective absorption of Cr(III) and then centrifuged. The upper layer of solution was transferred into another polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 5.0, stirred for 12 min for adsorption of the residual Cr(VI) and centrifuged. The two residues in two centrifuge tubes were washed twice with water, 2 ml of agar solution added, stirred for 2 min, then two slurries were prepared and used for the determination of Cr(III) and Cr(VI) by ETAAS. Detection limits (3sigma) of 0.01 microg L(-1) for Cr(III) and 0.03 microg L(-1) for Cr(VI) were obtained. The relative standard deviation was 2.8% for Cr(III) and 3.3% for Cr(VI) at the 1 microg L(-1) level. The method was applied to the determination of Cr(III)/Cr(VI) in water samples. The analytical recoveries of Cr(III) and Cr(VI) added to samples were 97-102 and 96-103%, respectively.  相似文献   

10.
A new method involving pre-concentration on modified silica fiber is described for the speciation of chromium(III) [Cr(III)] and chromium(VI) [Cr(VI)] in aqueous media. This method is based on the different chelating behavior of Cr(III) and Cr(VI) with morpholine-4-carbodithioate (MDTC). Both complexes are extracted on silica fiber modified by sol-gel technology by using 3-aminopropyltriethoxysilane (APS) as a precursor. All extracted samples are directly injected into an high-performance liquid chromatography injector for the simultaneous determination of Cr(III) and Cr(VI). Cr(VI) forms two different complexes, and Cr(III) forms a single complex with MDTC. Therefore, the concentration of Cr(VI) is determined directly from the peak area obtained at 5.4 min; whereas, the assay of Cr(III) is based on subtracting the peak area of Cr(VI) from the total peak area obtained at 4.3 min. Under the optimized conditions, the limits of detection for Cr(III) and Cr(VI) are found to be 0.7 ng/mL and 0.2 ng/mL, respectively.  相似文献   

11.
Gao RM  Zhao ZQ  Zhou QZ  Yuan DX 《Talanta》1993,40(5):637-640
A new spectrophotometric determination method of hexavalent chromium in waste water and plating baths is described based on the oxidation of beryllon III by chromium(VI) in 0.02M sulphuric acid medium. The decrease in the absorbance of beryllon III was measured at 482 nm with an apparent molar absorptivity of 5.15 x 10(4)1.mole(-1).cm(-1). Beer's law was obeyed for chromium(VI) over the range 0-25 mug/25 ml. After the oxidation of Cr(III) to Cr(VI) by ammonium persulphate, total chromium can be determined. Therefore, chromium(III) can be calculated by subtracting chromium(VI) from total chromium. The detection limit is 0.015 and 0.020 mug/25 ml for chromium(VI) and total chromium, respectively. A sensitive spectrophotometric method for trace Cr(III) and Cr(VI) in waste water and plating baths was developed with good precision and accuracy. The reaction is also discussed.  相似文献   

12.
A novel method for the speciation of chromium(III) and chromium(VI) by in situ separation and sequential determination with electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) was developed. The reaction conditions between Cr(III) and 8-hydroxyquinoline (8-Ox) and the vaporization behavior of the chelate formed were investigated in detail. It was found that the Cr(III)-8-Ox chelate could be formed at room temperature and vaporized from graphite furnace under controlled experimental conditions, therefore, an in situ separation of Cr(III) from Cr(VI) was achieved. The retained Cr(VI) in graphite tube was then determined by using fluorination vaporization ETV-ICP-AES with PTFE slurry as chemical modifier. Under optimum experimental conditions, the detection limits for Cr(III) and Cr(VI) are 8.6 ng/ml and 11.3 ng/ml, and the relative standard deviations (R.S.D.s) are 3.8% and 4.1% (c=0.1 μg/ml, n=6), respectively. The linear ranges of the calibration curve for both Cr(III) and Cr(VI) covered three orders of magnitude. The proposed method has been applied to the speciation of Cr(III) and Cr(VI) in water samples with the satisfactory results.  相似文献   

13.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

14.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

15.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

16.
On the basis of the chromogenic reaction of chromium(VI) with 1,5-diphenylcarbohydrazide (DPC) on the surface of Polysorb C-18 beads and the sequential injection renewable surface technique (SI-RST), a highly sensitive reflect spectrophotometric method for the determination of chromium(III) and chromium(VI) was proposed. Considerations of system and flow cell design, and factors that influence the determination performance were discussed. With 300 microl of sample loaded and 0.6 mg of beads trapped, the linear response range was 0.02 - 0.5 mg l(-1) Cr(VI) with a detection limit (3 sigma) of 2.4 microg l(-1) Cr(VI). The method achieves a precision of 1.3% RSD (n = 11) and a throughput of 53 samples per hour. The determination of Cr(III) was based on the same reaction for the determination of Cr(VI) after being oxidized by (NH4)2S2O8. The precision of the oxidation method was evaluated using a 0.2 mg l(-1) Cr(III) standard, yielding an RSD of 2.5% (n = 11). The average recovery of Cr(III) oxidized was tested to be 99.1%. The proposed method was used in the simultaneous determination of Cr(VI) and Cr(III) in water samples, and the error was less than 3%.  相似文献   

17.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

18.
A method is described for the determination of particulate chromium and dissolved chromium(III) and (VI) in water at μg l-1 levels. Particulate material is collected by filtration of the water sample through a membrane filter (0.4-μm pore-size). Chromium(III) and chromium(VI) are then coprecipitated, separately and in that order, with iron(III) hydroxide (at pH 8.5) and a cobalt—pyrrolidinedithiocarbamate carrier complex (at pH 4.0). Both precipitates are collected as thin films on membrane filters and, with the particulate material, analysed directly for chromium by x-ray fluorescence spectrometry. Detection limits, for a 100-ml water sample and counting times of 100 s, are 0.1 μg Cr l-1. The method is unaffected by sea salt and is applicable, without modifications, to river and estuarine waters.  相似文献   

19.
A simple speciation, separation and enrichment method has been developed for the determination of Cr(III) and Cr(VI) ions in different samples by ion-pair solvent extraction with a β-diketone ligand, 2-(4-methoxybenzoyl)-N′-benzylidene-3-(4-methoxyphenyl)-3-oxo-N-phenyl-propono hydrazide (MBMP). Cr(III) was separated from Cr(VI) as Cr(III)-(MBMP)-perchlorate ternary ion-pair complex. The influences of various analytical parameters including pH, amount of reagent, shaking time, sample volume and ionic strength on the recovery of Cr(III) and/or Cr(VI) were investigated. Total chromium was obtained after reducing Cr(VI) to Cr(III) with NH2OH?·?HCl. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 2%. The method detection limit based on 3σ criterion for Cr(III) was found to be 0.32?µg?L?1. The formed ternary ion-pair complex, Cr(III)?:?MBMP?:?2ClO4, has a molar ratio of 1?:?1?:?2. The developed method has been applied successfully to the speciation of chromium in various natural water, soil, sediment and hair samples with satisfactory results.  相似文献   

20.
A procedure is described for the preconcentration of Cd(I), Co(II), Cr(III), Cu(II), Mn(II), U(VI) and Zn(II) from 800 ml of water and sea-water samples by coprecipitation with 1-(2-pyridylazo)-2-naphthol (PAN) prior to neutron activation. Chromium is reduced to Cr(III) by hydroxylammonium chloride at pH 4 before the preconcentration step. Coprecipitation of 30 mg of PAN was most effective at pH 9 with final recoveries of 76–91% for six elements and 50% for uranium. The scheme is based on double irradiation of the same samples. Short (10 min) irradiation followed by γ-spectrometry counting for 10 min gives data for Cd (111mCd), Co, Cu, Mn and U (239U). A second 16-h irradiation permits determination of zinc and uranium (239Np) after a waiting time of 6 h, cadmium (115Cd) after 24 h and chromium after a waiting period of 2 weeks followed by counting for 30 min. Detection limits are 0.04 ng g?1 for Co, 0.8 ng g?1 for Cd, 0.3 ng g?1 for Cu, 0.2 ng g?1 for Cr, 0.006 ng g?1 for Mn, 0.006 ng g?1 for U and 0.3 ng g?1 for Zn. A further decrease of the detection limit for chromium to 0.05 ng g?1 can be achieved by separation of interfering nuclides and scintillation counting of 51Cr with a NaI(Tl) well-type detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号