首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Without the linear growth condition, by the use of Lyapunov function, this paper establishes the existence-and-uniqueness theorem of global solutions to a class of neutral stochastic differential equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.  相似文献   

2.
3.
4.
In this paper, we consider a class of stochastic neutral partial functional differential equations in a real separable Hilbert space. Some conditions on the existence and uniqueness of a mild solution of this class of equations and also the exponential stability of the moments of a mild solution as well as its sample paths are obtained. The known results in Govindan [T.E. Govindan, Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics 77 (2005) 139-154], Liu and Truman [K. Liu, A. Truman, A note on almost sure exponential stability for stochastic partial functional differential equations, Statist. Probab. Lett. 50 (2000) 273-278] and Taniguchi [T. Taniguchi, Almost sure exponential stability for stochastic partial functional differential equations, Stoch. Anal. Appl. 16 (1998) 965-975; T. Taniguchi, Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces, Stochastics 53 (1995) 41-52] are generalized and improved.  相似文献   

5.
The paper discusses both pth moment and almost sure exponential stability of solutions to neutral stochastic functional differential equations and neutral stochastic differential delay equations, by using the Razumikhin-type technique. The main goal is to find sufficient stability conditions that could be verified more easily then by using the usual method with Lyapunov functionals. The analysis is based on paper [X. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. Anal. 28 (2) (1997) 389-401], referring to mean square and almost sure exponential stability.  相似文献   

6.
There are few results on the numerical stability of nonlinear neutral stochastic delay differential equations (NSDDEs). The aim of this paper is to establish some new results on the numerical stability for nonlinear NSDDEs. It is proved that the semi-implicit Euler method is mean-square stable under suitable condition. The theoretical result is also confirmed by a numerical experiment.  相似文献   

7.
Sufficient conditions for almost surely asymptotic stability with a certain decay function of sample paths, which are given by mild solutions to a class of semilinear stochastic evolution equations, are presented. The analysis is based on introducing approximating system with strong solution and using a limiting argument to pass on some properties of strong solution to our purposes. Several examples are studied to illustrate our theory. In particular, by means of the derived results we lose conditions of certain stochastic evolution systems from Haussmann (1978) to obtain the pathwise stability for mild solution with probability one.  相似文献   

8.
In this paper we consider a linear scalar neutral stochastic differential equation with variable delays and give conditions to ensure that the zero solution is asymptotically mean square stable by means of fixed point theory. These conditions do not require the boundedness of delays, nor do they ask for a fixed sign on the coefficient functions. An asymptotic mean square stability theorem with a necessary and sufficient condition is proved. Some well-known results are improved and generalized.  相似文献   

9.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. It is surprising that there are not any numerical methods established for neutral stochastic delay differential equations yet. In the paper, the Euler–Maruyama method for neutral stochastic delay differential equations is developed. The key aim is to show that the numerical solutions will converge to the true solutions under the local Lipschitz condition.  相似文献   

10.
We develop necessary and sufficient conditions for the a.s. asymptotic stability of solutions of a scalar, non-linear stochastic equation with state-independent stochastic perturbations that fade in intensity. These conditions are formulated in terms of the intensity function: roughly speaking, we show that as long as the perturbations fade quicker than some identifiable critical rate, the stability of the underlying deterministic equation is unaffected. These results improve on those of Chan and Williams; for example, we remove the monotonicity requirement on the drift coefficient and relax it on the intensity of the stochastic perturbation. We also employ different analytic techniques.  相似文献   

11.
12.
Recently, in the numerical analysis for stochastic differential equations (SDEs), it is a new topic to study the numerical schemes of neutral stochastic functional differential equations (NSFDEs) (see Wu and Mao [1]). Especially when Markovian switchings are taken into consideration, these problems will be more complicated. Although Zhou and Wu [2] develop a numerical scheme to neutral stochastic delay differential equations with Markovian switching (short for NSDDEwMSs), their method belongs to explicit Euler–Maruyama methods which are in general much less accurate in approximation than their implicit or semi-implicit counterparts. Therefore, to propose an implicit method becomes imperative to fill the gap. In this paper we will extend Zhou and Wu [2] to the case of the semi-implicit Euler–Maruyama methods and equations with phase semi-Markovian switching rather than Markovian switching. The employment of phase semi-Markovian chains can avoid the restriction of the negative exponential distribution of the sojourn time at a state. We prove the semi-implicit Euler solution will converge to the exact solution to NSDDEwMS under local Lipschitz condition. More precise inequalities and new techniques are put forward to overcome the difficulties for the existence of the neutral part.  相似文献   

13.
The method of Lyapunov functions is one of the most effective ones for the investigation of stability of dynamical systems, in particular, of stochastic differential systems. The main purpose of the paper is the analysis of the stability of stochastic differential equations (SDEs) by using Lyapunov functions when the origin is not necessarily an equilibrium point. The global uniform boundedness and the global practical uniform exponential stability of solutions of SDEs based on Lyapunov techniques are investigated. Furthermore, an example is given to illustrate the applicability of the main result.  相似文献   

14.
15.
In this paper, some criteria on pth moment stability and almost sure stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching are obtained. Two examples are presented to illustrate our theories.  相似文献   

16.
Guangjie Li 《Applicable analysis》2018,97(15):2555-2572
Little seems to be known about stability results on the neutral stochastic function differential equations with Markovian switching driven by G-Brownian (G-NSFDEwMSs). This paper aims at investigating the pth moment exponential stability for G-NSFDEwMSs to fill this gap. Some sufficient conditions on the pth moment exponential stability of the trivial solution are derived by employing the Razumikhin-type method, stochastic analysis, and algebraic inequality technique. Moreover, an example is provided to illustrate the effectiveness of the obtained results.  相似文献   

17.
In this paper, we consider a class of impulsive stochastic differential equations driven by G-Brownian motion (IGSDEs in short). By means of the G-Lyapunov function method, some criteria on p-th moment stability and p-th moment asymptotical stability for the trivial solutions of IGSDEs are established. An example is presented to illustrate the efficiency of the obtained results.  相似文献   

18.
We are concerned with a class of neutral stochastic functional differential equations driven by fractional Brownian motion (fBm) in the Hilbert space. We obtain the global attracting sets of this kind of equations driven by fBm with Hurst parameter (0, 1/2): Especially, some suffcient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations are obtained. In the end, one example is given to illustrate the feasibility and effectiveness of results obtained.  相似文献   

19.
Non-positivity and oscillations of nonlinear stochastic difference equations are discussed to characterize the long-term behaviour of their solutions in almost sure sense. Moreover, we present results on non-positivity with probability less than one and give numerous examples satisfying our main hypotheses.  相似文献   

20.
This paper is devoted to discuss the exponential stability in mean square of neutral stochastic delayed systems (NSDDs) with switching and distributed-delay dependent impulses. By using multiple Lyapunov functions and average dwell time (ADT), we provide some sufficient conditions for the exponential stability in mean square for NSDDs with switching and distributed-delay dependent impulses. Compared with the existing related works, we consider not only the influences of switches and neutral type on the stability of NSDDs with switching and distributed-delay dependent impulses but also the influences of both the stable continuous dynamics case and the stable discrete dynamics case. Finally, we provide two examples to illustrate the effectiveness of the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号