首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
在电化学界面,电催化过程通常包括电子转移、吸附和脱附、静电相互作用、溶剂化及去溶剂化等多步过程,深入理解电催化反应机理极具挑战性.对纳米结构电化学界面(电极)处电催化过程的深入理解十分有助于阐明电催化反应机理和设计高性能电催化剂材料.电催化活性通常与电催化剂表面局域化的活性位点密切有关.在反应条件下,电催化反应过程的研究极大依赖于高分辨表征技术.经典的宏观电化学表征方法仅可以提供不同界面位点的平均信息,很难分辨一些特殊结构位点(如缺陷、晶界、边缘位点)的相关重要电化学信息.原位电化学扫描探针显微镜技术,包括电化学扫描隧道显微镜(EC-STM)、电化学原子力显微镜(EC-AFM)、扫描电化学显微镜(SECM)及扫描电化学池显微镜(SECCM),能够在纳米及原子尺度研究电催化反应过程,弥补了宏观表征方法的不足,为探究构效关系和解析电催化反应机理提供了机遇.本文介绍了各种扫描显微技术的基本原理、特点及优劣势,并且概述了各项技术在电催化领域研究的重大进展.EC-STM和EC-AFM能够原位表征电催化过程中的纳米尺度表面结构演变及吸附/脱附过程,但无法直接测量局部电化学活性(法拉第电流).通过S...  相似文献   

2.
扫描离子电导显微镜(SICM)是一种扫描探针显微技术,通过测定超微玻璃管探针的离子电流,它能够非接触地扫描样品表面,进而研究样品的形貌及性质。SICM具有成像分辨率高、探针易于制备和对被成像物体无损伤等特点,特别适用于研究生理条件下的活体细胞,是一种与扫描电化学显微镜及原子力显微镜互补的扫描探针显微镜技术。SICM能够对软界面及表面,如活细胞表面的显微结构,进行高分辨率成像;并能够与其它技术联用,研究细胞形貌与功能的关系;还能控制沉积特定分子,实现纳米尺度的显微操作与加工。本文对SICM的发展历史、仪器构造、基本原理及应用进行了综述。  相似文献   

3.
电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究   总被引:19,自引:1,他引:19  
采用光电流谱、透射光谱和扫描微探针显微镜技术对电沉积法制备的二氧化钛纳米微粒膜的光电化学性能和表面形貌进行了研究.结果表明,不同制备条件下的二氧化钛纳米微粒膜具有与紧密的半导体电极不同的光电化学性质,并探讨了其光电化学性能与表面形貌的关系.  相似文献   

4.
电催化水分解因其丰富的原料来源和环境友好被认为是一种有前途的制氢技术. 开发用于电催化析氢反应的高效电催化剂是迫切需要的. 随着石墨烯的兴起, 二维(2D)材料因其独特的物理、 化学和电子特性, 已逐渐成为水电解的潜在候选材料. 本文介绍了二维材料用于电化学水分解产生氢气的最新进展, 概括了二维材料的合成方法, 总结了改善二维材料电化学析氢性能的策略, 讨论了该领域面临的挑战和未来的发展机遇.  相似文献   

5.
铂基金属间化合物纳米晶因其高度有序的结构特点,优异的抗氧化及耐腐蚀性能,作为电极材料被广泛应用于各类电催化反应,目前已有的PtCo金属间化合物纳米晶在燃料电池阴极反应(氧还原反应)中的活性和稳定性均达到了美国能源部(DOE) 2020年的目标。为了进一步提高金属间化合物纳米晶的电催化性能,需要对影响纳米晶电催化性能的因素进行深入研究。本文综述了铂基金属间化合物纳米晶的研究现状,着重介绍了铂基金属间化合物的可控合成策略及其在电催化领域的最新研究进展,分析总结了该领域存在的问题,并展望了其未来发展方向。  相似文献   

6.
扫描电化学微探针的发展及其在局部腐蚀研究中的应用   总被引:1,自引:0,他引:1  
简要概述当前国内外具有空间分辨能力的扫描微探针技术及其在腐蚀研究中的应用,包括扫描微电极技术(SMET)、扫描电化学显微镜(SECM)、原子力显微镜(AFM)、扫描Kelvin探针技术(SKP)等,其中SMET、SECM、SKP及局部交流阻抗技术可直接测定腐蚀电极表面或界面电化学不均一性的分布图像,而原子力显微镜技术则是通过分子间作用力从纳米尺寸测量腐蚀过程表面形貌的变化.文中侧重介绍作者近年先后建立的具有微米空间分辨度的电化学微探针技术,并利用各种扫描探针技术研究金属/溶液界面电化学不均一性及其局部腐蚀过程.研究表明,空间分辨电化学方法的发展及应用,加深了人们对金属表面和金属/溶液界面电化学不均一性,特别是金属局部腐蚀发生、发展及过程机理的认识.  相似文献   

7.
电催化水裂解被广泛认为是一种非常有前景的制氢路线之一,这一反应过程包括析氢反应和析氧反应.与析氢反应相比,析氧反应涉及多步质子耦合–电子转移过程,需要较大的活化能垒和过电势,因此是水裂解反应的瓶颈. Ni–Fe层状双氢氧化物因其独特的层状结构和优异的析氧反应性能而备受关注.本文首先介绍了电催化析氧反应的机理以及评价电催化剂性能的关键参数和标准,讨论了Ni–Fe层状双氢氧化物催化剂的制备方法,随后重点综述了析氧反应性能优化策略,如构筑纳米结构、掺杂异原子、构建异质结构、负载单原子、调控缺陷位、扩大层间距等方法.最后,对Ni–Fe LDH催化剂未来发展提出了展望和挑战.  相似文献   

8.
纳米碳管空气电极在氧还原反应中的电催化性能   总被引:9,自引:0,他引:9  
电化学阻抗谱;纳米碳管空气电极在氧还原反应中的电催化性能  相似文献   

9.
燃料电池技术的商业化进程主要受制于其阴极动力学缓慢的氧还原反应(ORR)所需的高铂量电催化剂,因此急需开发更高活性的电催化剂。过去十年里,人们在提高铂基催化剂ORR活性的研究取得了极大进展。本文概述了通过结构调控提升铂基纳米晶氧还原电催化性能的最新进展,依据纳米晶的空间维度展开讨论,同时列举各类电催化材料的优缺点。基于理论和实验结果,本文重点讨论铂基纳米晶应用于氧还原电催化的构效关系,以及其对下一代电催化材料结构设计方面的潜在指导意义。最后,我们对此领域未来的研究方向做了展望。  相似文献   

10.
为了提高原始石墨毡(GF)对V3+/V2+氧化还原反应的电催化活性和降低析氢反应对电池性能的影响,本文采用水热法将氧化镉(CdO)纳米颗粒负载于石墨毡表面,制备出改性石墨毡(CdO/GF)作为高性能的钒电池负极。通过扫描电镜(SEM)、X射线衍射分析(XRD)进行表面形貌和物相分析得出:CdO纳米颗粒均匀负载于石墨毡纤维表面;线性扫描伏安法(LSV)、循环伏安测试(CV)、交流阻抗谱测试(EIS)表明:相对于GF,CdO/GF有效抑制了析氢反应的活性,CdO/GF对于V3+/V2+氧化还原反应的电化学活性和可逆性有显著的提高,电荷转移阻抗也有明显的减小;单电池测试中,对比GF,CdO/GF的放电容量衰减速率有显著的下降,在90 mA·cm-2的电流密度下的电压效率和能量效率提高了约5%。在多次充放电循环过程中,CdO/GF的催化性能显示出良好的稳定性。  相似文献   

11.
陈星星 《电化学》2016,22(2):113
本综述首先简单介绍了扫描电化学显微镜的基本概况,尤其是不同的工作模式. 其次,有针对性地介绍了SECM的不同工作模式在氧还原和水解析氧反应相关研究中的应用. 最后,对扫描电化学显微镜未来在新能源转换存储系统研究领域的应用进行了展望.  相似文献   

12.
能源和环境问题成为制约未来可持续发展的关键问题之一,因此,针对不同电催化反应设计电催化剂变得越来越重要.电催化剂因其能量效率高、制备简单和易操作等优点,而应用于可再生能源的相关反应(如水分解和人工光合作用)中.明确不同反应电催化剂的设计原理,深入理解其在相关反应中的催化机理,可进一步优化催化剂性能.本文综述了扫描电化学显微镜(SECM)应用于电催化反应的历程、关键方法以及一些代表性的工作,阐明了电催化剂的工作机理以推进电催化剂的设计.本文还介绍了为提高SECM的空间分辨率而尝试的纳米尺寸电极方面的新进展,分享了纳米电极在以前研究无法涉及的单一催化实体方面的应用.  相似文献   

13.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

14.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

15.
Scanning electrochemical microscopy (SECM) is a powerful technique that can provide chemical identity, quantification, and spatiotemporal information on biosurfaces. The ability of SECM for noninvasive and high-resolution electrochemical imaging has made it valuable for the study of cell phenotypes and functions. This review focuses on the latest advances of SECM technique for the biosurface imaging. The SECM measurements of different biomarkers, including oxygen consumption rate and enzyme activity of cell aggregates, redox state of cardiomyocytes, and bacterial metabolic activity, are introduced. The applicability of SECM on membrane permeability measurements, neurotransmitter measurements, and intracellular measurements is discussed.  相似文献   

16.
研究病变细胞和组织的异常表现可为理解重大疾病发生发展的病理机理和新型药物筛选提供重要参考.扫描电化学显微镜(Scanning electrochemical microscopy, SECM)是一种基于电化学原理的扫描探针显微镜,通过记录探针在样品表面扫描时的电流或电位等信息,对活细胞的形态和多种化学信息进行原位、实时...  相似文献   

17.
As the world energy crisis remains a long-term challenge, development and access to renewable energy sources are crucial for a sustainable modern society. Electrochemical energy conversion devices are a promising option for green energy supply, although the challenge associated with electrocatalysis have caused increasing complexity in the materials and systems, demanding further research and insights. In this field, scanning probe microscopy (SPM) represents a specific source of knowledge and understanding. Thus, our aim is to present recent findings on electrocatalysts for electrolysers and fuel cells, acquired mainly through scanning electrochemical microscopy (SECM) and other related scanning probe techniques. This review begins with an introduction to the principles of several SPM techniques and then proceeds to the research done on various energy-related reactions, by emphasizing the progress on non-noble electrocatalytic materials.

Investigation of electrocatalytic materials with scanning probe techniques (SECM, SICM, SECCM and AFM) for energy storage and conversion devices.  相似文献   

18.
The redox competition mode of scanning electrochemical microscopy (SECM) was used to visualize differences in local electrocatalytic activity of Fe and Ni hexacyanoferrates (HCFs) in hydrogen peroxide reduction. The uniform round-shaped spots of electrocatalysts for the SECM measurements were electrochemically deposited using a scanning droplet cell. A negligible activity of NiHCF towards H2O2 reduction compared to Prussian Blue (PB) was observed. The dependence of local Prussian Blue activity on the applied potential was investigated. The proposed strategy explores the potential application of SECM as a rapid screening tool for HCF film activity within a single experiment.  相似文献   

19.
Taking the advantage of the stability and penetrability of polyelectrolyte films formed by layer-by-layer (LbL) deposition, noble metal particles of Pd and Pt were fabricated in a preformed polyeletrolyte multilayer film by galvanic deposition. The metal deposition occurred as metal particles and they were tested for their properties as electrocatalyst for oxygen reduction. Atomic force microscopy (AFM) was used to characterize the morphology of the particle films. The noble metal particles were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) with respect to oxygen reduction. The results show that the electrocatalytic properties of the Pd particle film can be adjusted by the electrodeposition time. The hydrogen peroxide formed as an intermediate during electroreduction of dioxygen was conveniently measured in the SECM using the substrate-generation/tip-collection mode. The relevance of the main reduction pathways could be extracted from fitting the current transients to an analytical model.  相似文献   

20.
《Journal of Energy Chemistry》2017,26(6):1094-1106
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号