首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
以尿素做氮源、醋酸钴做金属源,用湿法合并高温热处理法合成了钴/氮共掺杂碳的非贵金属氧还原催化剂Co-N/C-T. 采用循环伏安(CV)法和线性扫描法(LSV)探究了氮源和金属源用量以及热处理温度对氧还原反应电催化活性的影响,活性最好的催化剂Co0.13-N0.3/C-800的峰电位达到0.829 V(vs.RHE),接近商用Pt/C的活性,但比商用Pt/C有更好的耐甲醇性和稳定性. 同时,采用SEM,TEM,BET,XRD和XPS方法表征了催化剂结构和组分特征,并提出催化剂可能的电催化活性氧还原反应机理.  相似文献   

2.
通过两步溶剂热法制备得到三维氮掺杂石墨烯与吡啶氧基钴酞菁的复合材料(CoTPPc/NGA).该复合材料具有优良的氧气还原性能,在起峰电位和半波上接近商业化的铂碳催化剂(Pt/C),且在稳定性和抗甲醇性能上优于铂碳催化剂,有望代替铂碳催化剂成为碱性直接甲醇燃料电池的阴极催化剂.  相似文献   

3.
4.
为了推动清洁能源-燃料电池的广泛应用, 迫切需要研发成本低、 原料来源广泛的过渡金属基高效氧还原反应(ORR)催化材料, 来替代目前使用的贵金属铂基催化材料. 本文以铁和钴等非贵金属离子作为催化材料的主要活性位点, 通过金属-羧基/羟基螯合键原位预锚定在具有三维(3D)孔道结构、 富含羧基和羟基以及极易在水溶液中形成凝胶网络的海洋生物质材料海藻酸钠上, 经冷冻干燥得到气凝胶; 然后通过高温碳化, 得到活性位点均匀分布在具有多级孔结构的碳骨架中的高活性、 高稳定的Co/Zn/Fe/N@bio-C-2氧还原催化剂材料, 该催化剂包含2种不同的铁基活性材料(Fe2O3和Fe)以及2种不同的钴基活性材料(CoO和Co).利用硝酸锌作为活化剂来改善催化材料的孔道结构, 使制备碳材料的总面积从149.3 m2/g增加到325.3 m2/g. 通过一系列对比实验发现, Fe/Co双活性位点与合适比表面积的协同作用使得Co/Zn/Fe/N@bio-C-2获得了最佳的ORR催化活性.其在0.1 mol/L KOH溶液中起始电位达到0.99 V, 半波电位可达0.87 V.  相似文献   

5.
过渡金属氮掺杂碳基催化剂已成为替代铂基氧还原反应(ORR)电催化剂的理想选择。本文通过静电纺丝技术制备了高比表面、高度分散的钴原子配位氮掺杂的碳纳米纤维催化剂(Co-N/C)。X射线衍射(XRD)和高分辨率透射电镜(HRTEM)结果证实Co元素高度分散于制备的Co-N/C催化剂中。X射线光电子能谱结果表明N元素主要以吡啶N和石墨N形式存在。该Co-N/C催化剂对ORR反应呈现出较高的电催化活性,其氧还原起始和半波电位分别为0.92 V和0.80 V(相对于标准氢电极),接近于商业化Pt/C催化剂的性能。以制备的Co-N/C催化剂作为阴极,25℃下锌空气燃料电池的开路电位1.54 V、最大功率密度达到了190 m V·cm~(-2)表明该催化剂具有良好的应用前景。  相似文献   

6.
采用两步热解法, 用尿素掺杂氧化石墨烯(GO)得到N掺杂的还原氧化石墨烯(N-RGO), 通过控制反应温度, 制备了具有不同电催化活性的N掺杂的还原氧化石墨烯. 透射电子显微镜(TEM)和扫描电子显微镜(SEM)结果显示, 制得的氮掺杂石墨烯(nG)表面褶皱和重叠增加. X射线光电子能谱(XPS)证明, 氮元素以吡啶N、 吡咯N和石墨化的N 3种形式掺杂在石墨烯中, 最高摩尔分数为6.6%. 通过循环伏安(CV)和旋转圆盘电极(RDE)测试了nG的电化学性能, 结果表明, 在酸性电解质中对氧还原(ORR)有较高的催化活性, 起始电位在0.1 V左右, 电催化还原氧气时主要为四电子反应, 且相对商用的Pt/C催化剂有更好的电化学稳定性, 其中第一步热解温度为200℃制得的nG催化性能最好.  相似文献   

7.
高氧还原活性担载铂催化剂的研发是加快质子交换膜燃料电池商业化进程的主要手段之一。以石墨烯为碳源,1,10-菲啰啉为氮源,FeCl3为铁源,用浸渍法制备铁氮掺杂石墨烯(Fe/N-G)载体,并通过乙二醇还原法获得PtFe/N-G催化剂,探究铁氮原子的引入对石墨烯担载铂催化剂氧还原反应催化活性的影响。采用X射线衍射、比表面积和孔径分布测试、X射线光电子能谱等表征手段对载体及催化剂结构进行表征,使用电化学方法对载体和催化剂的氧还原反应活性进行测试。结果表明,PtFe/N-G催化剂的氧还原反应起始电位及半波电位分别为0.96 V、0.83 V,优于相同Pt担载量的商业20%Pt/C催化剂。铁氮掺杂后,石墨烯载体具有较大的孔径更有利于氧还原反应过程中生成物与反应物的传递,PtFe/N-G催化剂中存在吡啶氮和Fe-N型氮与铂纳米颗粒的协同催化,以及铂纳米颗粒与铁氮掺杂石墨烯载体间的相互作用,是PtFe/N-G催化剂具有优异的氧还原催化活性的可能原因。  相似文献   

8.
以壳聚糖/硝酸铁凝胶为前躯体,实现了含氮高分子与金属盐的均匀混合,将凝胶冷冻干燥处理后,经过热处理和酸刻蚀得到了成分及微结构更加均匀的铁氮掺杂多孔碳片. 铁氮掺杂多孔碳片与商业铂碳相比,具有更高的起始电位,半波电位和优秀的循环性能,在碱性燃料电池的测试中实现了更高的功率密度. 铁氮掺杂多孔碳片出色的氧还原电催化性能归因于铁在壳聚糖中的原子级分散所导致的均匀分布的铁氮碳催化活性位,大的比表面积和均匀的孔道分布.  相似文献   

9.
闫绍兵  焦龙  何传新  江海龙 《化学学报》2022,80(8):1084-1090
燃料电池阴极氧还原(ORR)催化剂目前主要以商业Pt/C为主, 其高成本和稀缺性极大地限制了燃料电池的广泛应用. 为了替代Pt/C催化剂, 廉价高效的非贵金属催化剂目前受到了广泛的研究和关注. 利用氧化石墨烯(GO)为诱导模板, 借助表面丰富的含氧官能团, 实现了Co基金属有机框架材料(MOF) (ZIF-67)在GO表面的原位生长, 构筑了ZIF-67/GO层状复合材料. 热解过程中, 石墨烯的存在有效抑制了Co纳米颗粒的团聚, 并且很好地维持了原始的层状结构. 最终获得的Co@N-C/rGO复合催化剂材料实现了活性位的高度分散, 并且具有丰富的孔结构和优异的导电性能. 在电化学性能测试中Co@N-C/rGO表现出优异的ORR性能, 其起始电位为0.96 V, 半波电位0.83 V, 远优于ZIF-67直接热解得到的Co@N-C材料, 且性能与商业Pt/C催化剂相当. 此外, Co@N-C/rGO复合催化剂还表现出良好的催化稳定性和甲醇耐受性, 显示出该材料作为燃料电池氧还原催化剂的重要潜力.  相似文献   

10.
金属-空气电池具备诸多优势,譬如绿色环保、能量转化率高、启动快速、能量密度高、使用寿命和干态存储时间长等.与燃料电池相比,金属-空气电池结构简单,放电电压平稳,成本低,但依然存在一些制约发展的问题,如阴极催化剂.阴极催化剂在金属-空气电池中发挥催化氧还原反应(oxygen reduction reaction, ORR)和析氧反应(oxygen evolution reac-tion, OER)的关键作用.铂及其合金常用作 ORR的单功能催化剂,而钌和铱等是目前 OER催化效率最高的,但 ORR活性很低,因此需要开发出一种廉价而又具备双功能催化作用的催化剂.单异原子掺杂的碳基催化剂的研究集中在 ORR催化性能上,而多异原子共掺碳最近有研究表明具有双催化氧的性质,如氮磷共掺碳.在这些氮磷共掺的碳架中,氮磷共掺物起着 OER催化作用,掺氮物为 ORR催化的活性位点,而掺磷物起着强化作用.异原子掺杂负载的钴基催化剂(如掺氮还原氧化石墨烯载 Co3O4)是近年来双功能催化剂研究的另一个热点.钴基催化剂有着催化 ORR和 OER的多价价态,然而其本身导电性能差,这一缺陷可通过杂化石墨化碳来弥补,石墨化碳有着优良的导电性能.据我们所知,目前仍没有关于氮磷共掺碳负载的 Co3O4双催化氧的研究.我们合成了氮磷共掺碳(NPC)负载的 Co3O4(Co3O4/NPC),并首次探索了其氧还原和析氧性能. Co3O4/NPC合成分两步进行.首先通过三聚氰胺与植酸之间的酯化或缩聚覆盖在导电炭黑颗粒表面,在保护气氛下焙烧得到 NPC,然后经溶剂热反应以及空气中氧化合成 Co3O4/NPC.催化剂的性能综合考虑了催化活性和稳定性两方面.采用线性扫描伏安法评估了 OER和 ORR的催化活性.对于 OER, Co3O4/NPC的起始电势是0.54 V (以饱和甘汞电极为参比电极),在0.80 V时电流密度达到21.95 mA/cm2,均优于 Co3O4/C和 NPC. Co3O4/NPC的高效 OER催化可归因于氮磷共掺物与 Co3O4之间的协同作用.对于 ORR, Co3O4/NPC的催化效率与商用 Pt/C相近,它们的扩散极限电流密度分别为–4.49和–4.76 mA/cm2(E =–0.80 V).在 ORR过程中, Co3O4起到主要的催化作用.采用计时电流(电流-时间)法评估了催化剂的稳定性.经6 h测定,对于 OER, Co3O4/NPC剩46%电流;而对于 ORR,剩95%电流.整体而言, Co3O4/NPC在 OER和 ORR中都表现出高的催化效率以及良好的稳定性.  相似文献   

11.
Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries.The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability.During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts.We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 nanoparticles and graphene oxide, followed by annealing.The 3D graphene cages around Co-N-C nanocomposites not only provide a continuous conductive network for charge transfer, but also prevent the active phase from aggregation during electrode manufacturing and electrochemical reactions.When evaluated as an ORR electrocatalyst, the material exhibited comparable activity but superior stability to commercial Pt/C catalyst in an alkaline electrolyte. © 2018 Chinese Chemical Society. All rights reserved.  相似文献   

12.
鞠剑  陈卫 《电化学》2014,20(4):353
银基氧还原电催化剂具有较高的电催化活性且价格相对低廉,因而受到广泛关注. 本文采用简单、预先合成的石墨烯量子点作为载体和还原剂,制得了负载于石墨烯量子点、且无保护剂和表面活性剂的表面洁净银纳米粒子(Ag NPs/GQDs). 电化学研究表明,Ag NPs/GQDs复合电催化剂的氧还原有较高的电催化活性,氧在碱性溶液中可经4电子途径还原为水. 与商业铂碳电极(Pt/C)相比,AgNPs/GQDs电极具有高催化电流密度、良好稳定性和极佳抗甲醇性能. 该银纳米粒子对开发高性能和低成本的非铂氧还原电催化剂有潜在的应用前景.  相似文献   

13.
以煤焦油沥青为碳源,纳米Fe(OH)3为模板制备了一种三维石墨烯类多孔碳材料,通过测试氧还原性能,确定了最佳制备工艺为:反应物煤沥青,纳米Fe(OH)3,KOH的质量配比为6:8:4,热解温度为800 ℃. 扫描电镜(SEM)测试结果表明,制得的产品具有明显的孔结构且分布均匀. 透射电镜(TEM)测试结果进一步表明,产品具有泡沫状的多孔结构,高分辨透射电子显微镜图像表明该产品具有多层的三维石墨烯结构. X射线衍射(XRD)数据表明,在29o位置出现的衍射峰是多层石墨烯结构,42o位置的衍射峰表明,产品具有一定程度的石墨化. 由拉曼光谱结果计算IG与I2D的比值表明产品为多层石墨烯结构. X射线光电子能谱分析(XPS)检测到的C元素含量约为88.7%,主要包含C-C键,图谱中未发现铁元素的存在,证明纳米Fe(OH)3模板已被洗净. 根据比表面积测定(BET)可知,多孔碳的比表面积为2040 m2•g-1,孔径集中分布在10~400 nm,这与TEM测试得到的结果一致. 在0.1 mol•L-1 KOH中进行催化氧还原性能测试,起始还原电位为0 V (vs. Hg/HgO),电子转移数为3.58。测试结果表明,制得的三维石墨烯类多孔碳具有良好的催化氧还原性能.  相似文献   

14.
Herein, we report a negative pressure pyrolysis to access dense single metal sites (Co, Fe, Ni etc.) with high accessibility dispersed on three-dimensional (3D) graphene frameworks (GFs), during which the differential pressure between inside and outside of metal–organic frameworks (MOFs) promotes the cleavage of the derived carbon layers and gradual expansion of mesopores. In situ transmission electron microscopy and Brunauer–Emmett–Teller tests reveal that the formed 3D GFs possess an enhanced mesoporosity and external surface area, which greatly favor the mass transport and utilization of metal sites. This contributes to an excellent oxygen reduction reaction (ORR) activity (half-wave potential of 0.901 V vs. RHE). Theoretical calculations verify that selective carbon cleavage near Co centers can efficiently lower the overall ORR theoretical overpotential in comparison with intact atomic configuration.  相似文献   

15.
以双金属化合物{[Co (bpy)2]3[Fe (CN)6]2}[Fe (CN)6]1/3为前驱体,采用纳米灌注法制备了具有Fe—N、Co—N和Fe—C≡N—Co活性结构的Fe、Co、N掺杂介孔Fe-Co-N-GC催化剂。Fe-Co-N-GC具有较高的比表面积和石墨化程度,使其氧还原反应(ORR)催化性能显著提高。Fe-Co-N-GC催化剂在ORR过程中表现出优异的稳定性和抗甲醇性能。  相似文献   

16.
A simple, versatile, and cost-effective one-pot electrochemical deposition is used to fabricate rhodium (Rh) nanoparticles decorated surface of reduced graphene oxide (rGO) functionalized glassy carbon electrode (GCE) for oxygen reduction reaction (ORR) in alkaline media. The chemical and physical structure of the sample is probed via transmission electron microscopy, rotating disk electrode (RDE), X-ray photoelectron spectroscopy, linear sweep voltammetry, and Raman spectroscopy. The synergistic effects between the unique properties of Rh nanoparticles and rGO creates such innovative hybrid that exhibits a catalytic activity comparable to that of the commercial platinum electrocatalyst (Pt/C). As a result, the as-electrodeposited Rh@rGO hybrid exhibits outstanding ORR activity in alkaline media, as evidenced by a larger diffusion-limited current, greater positive onset potential, much better stability and methanol tolerance than Pt/C under the same conditions.  相似文献   

17.
An electrocatalyst with high oxygen reduction reaction (ORR) activity and high stability during start–stop operation is necessary. In this paper, hollow-structure Pt-Ni electrocatalysts are investigated as ORR catalysts. After synthesis via sacrificial SiO2 template method, the electrocatalyst exhibits much higher specific activity (1.88 mA/cm2) than a commercial Pt/C catalyst. The mass activity (0.49 A/mg) is 7 times higher than the commercial Pt/C catalyst. The kinetics of the ORR is evaluated using Tafel and K-L plots. It also exhibits a higher durability than commercial Pt/C catalyst during accelerated durability test (ADT). Moreover, the electrocatalyst shows good resistance against accelerated durability test for start–stop, the specific activity and mass activity drops 34.6% and 40.8%, respectively, far better than the commercial catalyst.  相似文献   

18.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件.  相似文献   

19.
Four N-doped graphene materials with a nitrogen content ranging from 8.34 to 13.1 wt.% are prepared by the ball milling method. This method represents an eco-friendly mechanochemical process that can be easily adapted for industrial-scale productivity and allows both the exfoliation of graphite and the synthesis of large quantities of functionalized graphene. These materials are characterized by transmission and scanning electron microscopy, thermogravimetry measurements, X-ray powder diffraction, X-ray photoelectron and Raman spectroscopy, and then, are tested towards the oxygen reduction reaction by cyclic voltammetry and rotating disk electrode methods. Their responses towards ORR are analysed in correlation with their properties and use for the best ORR catalyst identification. However, even though the mechanochemical procedure and the characterization techniques are clean and green methods (i.e., water is the only solvent used for these syntheses and investigations), they are time consuming and, generally, a low number of materials can be prepared, characterized and tested. In order to eliminate some of these limitations, the use of regression learner and reverse engineering methods are proposed for facilitating the optimization of the synthesis conditions and the materials’ design. Thus, the machine learning algorithms are applied to data containing the synthesis parameters, the results obtained from different characterization techniques and the materials response towards ORR to quickly provide predictions that allow the best synthesis conditions or the best electrocatalysts’ identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号