首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
余林颇  陈政 《电化学》2017,23(5):533
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

2.
《电化学》2017,(5)
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展.导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能.活性碳和碳黑等一类碳材料则可作为非法拉第储能的电极材料.通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量.此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求.超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

3.
廖川平 《化学通报》2014,(8):865-871
本文比较了超级电容器、锂离子电池和超级电容电池的结构、原理、研究现状和发展前景。超级电容电池的正极具有超级电容器电极的结构和双电层储能机制,负极具有类似锂离子电池负极的结构和快速电化学储能机制。超级电容器和锂离子电池的发展空间都很有限,而作为两者结合的产物的超级电容电池可兼具高比功率、高比能量、高放电电压和长循环寿命的优点,是未来储能电池的发展方向之一,但还面临缺乏具有高分解电压的电解液和高充电电压下电解液中离子枯竭的问题。  相似文献   

4.
超级电容电池   总被引:4,自引:0,他引:4  
廖川平 《化学通报》2014,77(9):865-871
本文比较了超级电容器、锂离子电池和超级电容电池的结构、原理、研究现状和发展前景。超级电容电池的正极具有超级电容器电极的结构和双电层储能机制,负极具有类似锂离子电池负极的结构和快速电化学储能机制。超级电容器和锂离子电池的发展空间都很有限,而作为两者结合的产物的超级电容电池可兼具高比功率、高比能量、高放电电压和长循环寿命的优点,是未来储能电池的发展方向之一,但还面临缺乏具有高分解电压的电解液和高充电电压下电解液中离子枯竭的问题。  相似文献   

5.
超级电容器具有功率密度大、循环寿命长等优点,但同时面临着能量密度低等缺点. 胶体离子超级电容器是最近开发的一种新型赝电容器,同时具有高功率密度和高能量密度的特点. 胶体离子超级电容器能够充分利用多价态金属阳离子的多电子氧化还原反应,完全释放储存的潜在电能,从而提高超级电容器的能量密度. 由于胶体离子的存在,缩短了电子、离子的扩散长度,加快了氧化还原反应动力学,从而保持高的功率密度. 本文主要介绍胶体离子超级电容器的发展过程、最新研究进展以及需要进一步开展的研究工作,作者希望从一个新的角度去研究发展下一代高性能电化学储能设备,实现新的突破.  相似文献   

6.
陈军 《电化学》2016,22(5):435
以电化学能量储存和转化为特点的电池、电容器等储能技术,正在信息通讯、新能源汽车、微电网、分布式发电、大型电力储能、智能电网等领域得到广泛应用,将有力推动能源互联网的快速发展. 作为储能核心技术之一的锂电池、钠电池与超级电容器,更加受到重视. 这些电化学储能装置的性能依赖于所使用的电极材料与结构等. 发展高能量密度、高功率密度和长循环寿命的低成本储能体系成为能源电化学材料研究的核心. 本专辑围绕锂离子电池、钠离子电池、锂硫电池、超级电容器等,收录了在该领域具有丰富研究经验的团队所撰写的8篇相关综述和研究论文. 其中,围绕下一代锂离子电池负极硅材料,邀请了3篇综述和研究论文;鉴于丰富的钠资源,在钠离子电池研究方面也邀请了3篇综述论文;同时在高能量密度的锂硫电池和高功率密度的超级电容器方面各邀请1篇论文. 从这些论文中,可以部分看出锂离子电池、钠离子电池、锂硫电池、超级电容器等能源电化学材料的研究进展. 希望借助此专辑的出版,能使广大读者更好地了解上述几类电池、电容器的研究现状,研究趋势和存在问题及挑战,为更深入地开展该领域研究提供参考,以推动我国能源电化学材料研究的进一步发展. 在此,对专辑的所有作者、审稿人及编辑部工作人员的辛勤劳动,表示最衷心的感谢!  相似文献   

7.
正超级电容器是一种新型的绿色储能装置,具有功率密度高、循环寿命长、充放电速度快、可靠性高、绿色环保等特性,在移动通讯、航空航天、电动汽车和国防等领域有着巨大的应用潜力。近年来,随着超级电容器研究的不断深入、相关技术产业的快速发展,其应用领域正在不断的扩展、市场前景十分广阔1,2。电极材料是超级电容器的关键所在,它决定着该储能器件的主要性能指标,如  相似文献   

8.
电化学电容器是一种在高比表面积多孔电极表面通过电吸附离子或快速法拉第反应来存储电荷的储能器件.近十年来,通过对电极材料纳米尺度的调控,超级电容器的各项性能指标得到了大幅度提升.深入理解电荷存储机制对进一步提升超级电容器的性能至关重要.本文介绍了近年来国际上采用原位核磁共振技术(in-situ NMR spectroscopy)、电化学石英晶体微天平(EQCM)、原位红外光谱(in-situ infrared(IR) spectroscopy)和原位小角散射技术(in-situ scattering approaches)等电化学原位技术研究超级电容器储能机理方面的进展,并探讨了原位表征技术在构建高性能超级电容器方面所面临的挑战.  相似文献   

9.
锂离子混合型电容器兼有锂离子电池和超级电容器的优点,在电化学储能领域具有广泛的应用前景. 但其产业化仍存在一系列的基础及工艺方面的问题,具体包括器件结构设计、电极材料筛选、预嵌锂工艺和电解液与电极的界面等. 本文结合作者课题组的研究工作介绍了近年来高能量密度的锂离子混合型电容器的研究进展,内容涉及锂离子电容器正/负极材料的筛选、预嵌锂工艺的优化、内并联结构的锂离子电池型超级电容器复合正极组成材料的调控、隔膜的选择、电解液的组成、以及器件的高/低温性能,分析了锂离子电容器的容量衰减机制,探讨了锂离子电池型超级电容器的储能机制,提出了未来对高能量密度的锂离子混合型电容器研究的展望.  相似文献   

10.
石墨烯基纤维电容器的可控制备及应用   总被引:1,自引:1,他引:0  
聂肖威  陈南  李静  曲良体 《应用化学》2016,33(11):1234-1244
超级电容器又名电化学电容器,是一种绿色储能器件。 超级电容器的研究,从根本上讲是寻找比表面积大且可以被充分利用的电极材料。 石墨烯作为sp2杂化碳质材料的基元单位,具有独特的二维结构和优异的物化特性,使得其在超级电容器领域具有巨大的应用潜力,其中石墨烯纤维超级电容器受到了研究工作者越来越广泛的关注。 本文通过对一维石墨烯纤维的自组装以及与制备材料的共组装来作为超级电容器的电极材料,对其可控制备进行了系统的归纳和总结,可控构建独特的电极材料,使其性能得以优化,组装出高性能的超级电容器,并对相关领域的发展趋势做了展望。  相似文献   

11.
Energy storage devices are one of the hot spots in recent years due to the environmental problems caused by the large consumption of unsustainable energy such as petroleum or coal. Capacitors are a common device for energy storage, especially electrical energy. A variety of types including electrolytic capacitors, mica capacitors, paper capacitors, ceramic capacitors, film capacitors, and non-polarized capacitors have been proposed. Their specific applications depend on their intrinsic properties. Dielectric capacitors have reasonable energy storage density, with current research focusing on the enhancement of energy density and making the materials more flexible as well as lightweight. Improvement strategies are based on the premise that use of two or more different materials (e.g. polymers and ceramics/metals) at an optimal formulation can result in properties that combine the advantages of the precursor materials. Different polymers especially fluoropolymers (e.g. PVDF and PVDF based co-polymer) are the main components in dielectric nanocomposites for capacitors with high energy storage performance. In this article, we have briefly summarized the recent advances in functional polymers nanocomposites for energy storage applications with a primary focus on polymers, surface engineering, functional groups and novel synthesis/manufacturing concepts applied to new materials. The article presents a unique integrated structure and approaches providing key knowledge for the design and development of novel, low-cost, multifunctional next-generation energy storage materials with improved efficiency.  相似文献   

12.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.  相似文献   

13.
胡丹  刘乔  陈重一 《化学通报》2018,81(6):483-492
可伸展性和可压缩性是超级电容器作为现代柔性可穿戴电子设备的关键性能。聚合物水凝胶因其优异的力学性能、独特的网络状结构等优点,成为新一代高性能超级电容器的理想材料。它不仅可作为高效储能的柔性电极材料,而且可作为准固态电解质材料,在克服传统液体电解质系列缺陷的同时,获得更加轻薄、安全、稳定的柔性全固态储能器件。本文以聚合物水凝胶的化学组成为线索,分别介绍了聚合物水凝胶在超级电容器电极和电解质两方面的应用研究进展,并进一步对聚合物水凝胶在该领域的发展趋势进行了展望。  相似文献   

14.
Harnessing new materials for developing high-energy storage devices set off research in the field of organic supercapacitors. Various attractive properties like high energy density, lower device weight, excellent cycling stability, and impressive pseudocapacitive nature make organic supercapacitors suitable candidates for high-end storage device applications. This review highlights the overall progress and future of organic supercapacitors. Sustainable energy production and storage depend on low cost, large supercapacitor packs with high energy density. Organic supercapacitors with high pseudocapacitance, lightweight form factor, and higher device potential are alternatives to other energy storage devices. There are many recent ongoing research works that focus on organic electrolytes along with the material aspect of organic supercapacitors. This review summarizes the current research status and the chemistry behind the storage mechanism in organic supercapacitors to overcome the challenges and achieve superior performance for future opportunities.  相似文献   

15.
现如今世界正面临着与能源相关的一系列问题与挑战,科学家们致力于研究绿色高性能的能量存储器件以适应当前乃至以后长久可持续创新发展的需要。超级电容器作为一种新型的绿色能源储存装置,具有功率密度大、理论比电容高、充放电速度快、循环寿命长、安全性高、环境友好且经济等优点,为人类解决能源危机提出了可能。电极材料是影响超级电容器性能的重要因素。近些年,由于二氧化锰基超级电容器具有理论比电容高、化学稳定性好、环境友好等特点被广泛研究。同时多种二维材料也继石墨烯后被相继用作超级电容器电极材料,具有二维结构特征材料在提高双电层电容器的能量密度、改善赝电容电容器方面发挥着重要作用。实现高比电容和高倍率性能,将二氧化锰与二维材料复合将不失为一个有前景的选择。本文系统介绍了以石墨烯为代表的各类二维材料与二氧化锰复合物在超级电容器中的应用研究,并聚焦于这些二维材料与二氧化锰复合后所展现的优异电化学性能。  相似文献   

16.
《中国化学快报》2023,34(7):107784
Zinc-ion hybrid capacitors (ZICs) are considered as newly-emerging and competitive candidates for energy storage devices due to the integration of characteristic capacitor-level power and complementary battery-level energy. The practical application of rising ZICs still faces the specific capacity and dynamics mismatch between the two electrodes with different energy storage mechanisms, which cannot meet the ever-growing indicator demand for portable electronic displays and public traffic facilities. Focusing on these unresolved issues, this mini-review presents recent advances in ZICs referring to the hybrid energy storage mechanism, design strategies of both capacitor-type and battery-type electrode materials, and electrolyte research toward advanced performances (e.g., high operational potential, wide adaptive temperature). Finally, current challenges and future outlook have been proposed to guide further exploration of next-generation ZICs with a combination of high-power delivery, high-energy output and high-quality service durability.  相似文献   

17.
伴随着电化学储能器件在便携式电子产品、混合动力电动汽车及大型工业规模的电力和能源管理中的应用,设计合成出结构新颖、性能优越的先进纳米电极材料显得至关重要.作为电化学储能器件中的重要一员,超级电容器以其功率密度高、循环寿命长等特点越来越受到人们的广泛关注,而电极材料的组成及结构是其性能高低的决定性因素.本文结合本科研团队近几年来的研究工作,综述了有关超级电容器纳米电极材料的设计与可控合成及其前沿研究进展.  相似文献   

18.
In the modern world, miniaturization of electronic devices for various applications is becoming more common. In particular, the development of flexible energy storage devices have received much attention since they have a superior role in the development of newer technologies such as in public wearables, portable electronic devices, and electronic skin proceeds. Considering the high power density, long cycle life, and shelf life as well as outstanding mechanical strength, flexible supercapacitors are one of the integral parts of these new technologies. In the recent past, researchers have developed innumerable nanomaterials to develop supercapacitors. Among these, MoS2 has received much attention due to its several physical and chemical properties, which are more favorable for energy storage applications. Their sheet-like structure, high surface-to-volume ratio, ease of synthesis, flexibility, high mechanical strength, and pseudocapacitive storage mechanism make them potential candidates for flexible storage applications similar to graphene. This review provides recent applications and scope of MoS2 in flexible supercapacitors in both composite forms with other carbon nanomaterials, metal oxides, and polymers as well as MoS2 itself. Also, we will discuss some MoS2-based self-standing devices, which can generate and store energy in a single device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号