首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled identical dynamical units, have been identified in various systems and generalized to coupled nonidentical oscillators. It has been shown that strong heterogeneity in the frequencies of nonidentical oscillators might be harmful to chimera states. In this work, we consider a ring of nonlocally coupled bicomponent phase oscillators in which two types of oscillators are randomly distributed along the ring: some oscillators with natural frequency ω1 and others with ω2 . In this model, the heterogeneity in frequency is measured by frequency mismatch |ω1ω2| between the oscillators in these two subpopulations. We report that the nonlocally coupled bicomponent phase oscillators allow for chimera states no matter how large the frequency mismatch is. The bicomponent oscillators are composed of two chimera states, one supported by oscillators with natural frequency ω1 and the other by oscillators with natural frequency ω2. The two chimera states in two subpopulations are synchronized at weak frequency mismatch, in which the coherent oscillators in them share similar mean phase velocity, and are desynchronized at large frequency mismatch, in which the coherent oscillators in different subpopulations have distinct mean phase velocities. The synchronization–desynchronization transition between chimera states in these two subpopulations is observed with the increase in the frequency mismatch. The observed phenomena are theoretically analyzed by passing to the continuum limit and using the Ott-Antonsen approach.  相似文献   

2.
Chimera states are firstly discovered in nonlocally coupled oscillator systems. Such a nonlocal coupling arises typically as oscillators are coupled via an external environment whose characteristic time scale τ is so small (i.e., τ → 0) that it could be eliminated adiabatically. Nevertheless, whether the chimera states still exist in the opposite situation (i.e., τ ≫ 1) is unknown. Here, by coupling large populations of Stuart−Landau oscillators to a diffusive environment, we demonstrate that spiral wave chimeras do exist in this oscillator-environment coupling system even when τ is very large. Various transitions such as from spiral wave chimeras to spiral waves or unstable spiral wave chimeras as functions of the system parameters are explored. A physical picture for explaining the formation of spiral wave chimeras is also provided. The existence of spiral wave chimeras is further confirmed in ensembles of FitzHugh−Nagumo oscillators with the similar oscillator-environment coupling mechanism. Our results provide an affirmative answer to the observation of spiral wave chimeras in populations of oscillators mediated via a slowly changing environment and give important hints to generate chimera patterns in both laboratory and realistic chemical or biological systems.  相似文献   

3.
Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.  相似文献   

4.
We consider the simplest network of coupled non-identical phase oscillators capable of displaying a "chimera" state (namely, two subnetworks with strong coupling within the subnetworks and weaker coupling between them) and systematically investigate the effects of gradually removing connections within the network, in a random but systematically specified way. We average over ensembles of networks with the same random connectivity but different intrinsic oscillator frequencies and derive ordinary differential equations (ODEs), whose fixed points describe a typical chimera state in a representative network of phase oscillators. Following these fixed points as parameters are varied we find that chimera states are quite sensitive to such random removals of connections, and that oscillations of chimera states can be either created or suppressed in apparent bifurcation points, depending on exactly how the connections are gradually removed.  相似文献   

5.
In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity NABI (ρTAABI) increases with F but decreases with the variable y, while the variation of the negativity NBIBII(ρTAABI) is opposite to that of the negativity NABI (ρTAABI). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII) is independent of it. However, both S(ρABI) and S(ρBIBII) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.  相似文献   

6.
Amit Sharma 《Physics letters. A》2019,383(17):2051-2055
We report the emergence of an explosive synchronization transition in the identical oscillators interacting indirectly through a network of dynamical agents. The transition from incoherent state to coherent state and vice–versa in these coupled oscillator exhibits an abrupt as well as irreversible. Such transition depends on the network topology as well as the interaction between the oscillators and dynamical agents rather than degree-frequency correlation in the network of oscillators. The occurrence of explosive synchronization is studied in details by using an appropriate order parameter for limit-cycle oscillators with respect to the different parameters like rewiring probability, average degree, and diffusion rate in dynamical agents.  相似文献   

7.
The kidney plays an essential role in our body, mainly by controlling secretion and reabsorption of water and salts. The kidneys consist of a large number of nephrons which are the functional units of the kidney. The interactions between these nephrons induce different behaviors which can be considered by a dynamical model. In this paper, a network of coupled nephron models and its dynamics is investigated. Numerical simulations of the network reveal various types of dynamical patterns depending on the coupling function and strength. One of the observed phenomenon is the emergence of chimera state. A chimera state is defined by the coexistence of coherent and incoherent groups in a network of identical oscillators. The occurrence of the chimera state can be related to the situation of disturbed synchronous oscillation of the TGF-mediated proximal pressure.  相似文献   

8.
Heng-Mei Li 《中国物理 B》2023,32(1):14202-014202
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device (QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters (BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t=2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function (WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t=2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.  相似文献   

9.
10.
We study intermittent lag synchronization in a system of two identical mutually coupled Duffing oscillators with parametric modulation in one of them. This phenomenon in a periodically forced system can be seen as intermittent jump from phase to lag synchronization, during which the chaotic trajectory visits a periodic orbit closely. We demonstrate different types of intermittent lag synchronizations, that occur in the vicinity of saddle-node bifurcations where the system changes its dynamical state, and characterize the simplest case of period-one intermittent lag synchronization.  相似文献   

11.
We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.  相似文献   

12.
Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.  相似文献   

13.
The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.  相似文献   

14.
We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially nonlocal fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in antiphase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications.  相似文献   

15.
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde–Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin–Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number (C=−1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C=−1 (tBCS1) far from half filling and C= 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.  相似文献   

16.
余学才  汪平和  张利勋 《物理学报》2013,62(14):144202-144202
研究了原子在光晶格偶极势依赖原子动量情况下的运动, 特别考虑了偶极势对原子动量的依赖特性. 对动量和位置的方差研究表明, 原子的动量方差呈现压缩性质, 位置方差呈现放大性质.据此我们预言光晶格动量依赖偶极势中的单粒子态可能接近动量压缩线态. 研究结果还表明, 红失谐情况下原子的动量演化可分为三个过程: 第一个过程是慢减速过程, 初始动量较大的原子, 动量以近似阻尼振荡的形式衰减; 第二个过程是快减速过程, 当动量被减速到接近到光子动量时, 动量迅速减小到hk(Ω/γ)2, 其中hk为光子动量, Ω为拉比频率, γ为原子波函数衰减函数; 第三个过程是原子被囚禁过程, 当原子动能被降低到小于势井深度时, 原子被囚禁在晶格波腹附近. 关键词: 动量演化 光晶格 压缩态  相似文献   

17.
Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh–Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength–coupling radius plane, which show strong multistability of chimera states, are explored.  相似文献   

18.
Cloning of chimera states, which is a new effect caused by the short-term interaction in a multiplex network, has been described. This effect is observed when two ring networks of linearly coupled two-frequency (bistable) oscillators are combined into the multiplex network. At certain values of the strength and duration of the inter-ring (multiplex) interaction, a copy of a chimera state with accuracy to phases in the incoherent part is formed in the ring with an initially random phase distribution. It has been shown that the effect is structurally stable and is due to the competition of self-sustained oscillations in individual rings.  相似文献   

19.
A ring of N identical phase oscillators with interactions between L-nearest neighbors is considered, where L ranges from 1 (local coupling) to N/2 (global coupling). The coupling function is a simple sinusoid, as in the Kuramoto model, but with a minus sign which has a profound influence on its behavior. Without the limitation of the generality, the frequency of the free-running oscillators can be set to zero. The resulting system is of gradient type, and therefore, all its solutions converge to an equilibrium point. All so-called q-twisted states, where the phase difference between neighboring oscillators on the ring is 2πq/N, are equilibrium points, where q is an integer. Their stability in the limit N → ∞ is discussed along the line of Wiley et al. [Chaos 16, 015103 (2006)] In addition, we prove that when a twisted state is asymptotically stable for the infinite system, it is also asymptotically stable for sufficiently large N. Note that for smaller N, the same q-twisted states may become unstable and other q-twisted states may become stable. Finally, the existence of additional equilibrium states, called here multi-twisted states, is shown by numerical simulation. The phase difference between neighboring oscillators is approximately 2πq/N in one sector of the ring, -2πq/N in another sector, and it has intermediate values between the two sectors. Our numerical investigation suggests that the number of different stable multi-twisted states grows exponentially as N → ∞. It is possible to interpret the equilibrium points of the coupled phase oscillator network as trajectories of a discrete-time translational dynamical system where the space-variable (position on the ring) plays the role of time. The q-twisted states are then fixed points, and the multi-twisted states are periodic solutions of period N that are close to a heteroclinic cycle. Due to the apparently exponentially fast growing number of such stable periodic solutions, the system shows spatial chaos as N → ∞.  相似文献   

20.
Synchronization of coupled oscillators exhibiting the coexistence of chaotic attractors is investigated, both numerically and experimentally. The route from the asynchronous motion to a completely synchronized state is characterized by the sequence of type-I and on-off intermittencies, intermittent phase synchronization, anticipated synchronization, and period-doubling phase synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号