首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vinayak  Akhilesh Pandey 《Pramana》2009,73(3):505-519
Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓCUE to CUE transition where ℓCUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.  相似文献   

2.
We report theoretical investigations of the quantized spin-Hall conductance fluctuation of graphene in the presence of disorder. Two graphene models that exhibit the quantized spin-Hall effect (QSHE) are analyzed. Model I is with unitary symmetry under an external magnetic field B not = 0 but with a zero spin-orbit interaction, t(SO)=0. Model II is with symplectic symmetry where B=0 but t(SO) not = 0. The two models give exactly the same universal QSHE conductance fluctuation value 0.285+/-0.005e/4pi regardless of symmetry. We also examined a third model that exhibits QSHE but with quadratic dispersion and obtained the same results. Finally, all three models of QSHE have a one-sided log-normal distribution for spin-Hall conductance. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class.  相似文献   

3.
陈竞哲  张进  韩汝珊 《中国物理 B》2008,17(6):2208-2215
The mesoscopic quantum interference phenomenon (QIP) can be observed and behaves as the oscillation of conductance in nano-devices when the external magnetic field changes. Excluding the factor of impurities or defects, specific QIP is determined by the sample geometry. We have improved a first-principles method based on the matrix Green's function and the density functional theory to simulate the transport behaviour of such systems under a magnetic field. We have studied two kinds of QIP: universal conductance fluctuation (UCF) and Aharonov Bohm effect (A-B effect). We find that the amplitude of UCF is much smaller than the previous theoretical prediction. We have discussed the origin of difference and concluded that due to the failure of ergodic hypothesis, the ensemble statistics is not applicable, and the conductance fluctuation is determined by the flux-dependent density of states (DOSs). We have also studied the relation between the UCF and the structure of sample. For a specific structure, an atomic circle, the A-B effect is observed and the origin of the oscillation is also discussed.  相似文献   

4.
We find the conductance distribution function of the two-dimensional Anderson model in the strongly localized limit. The fluctuations of lng grow with lateral size as L1/3 and follow a universal distribution that depends on the type of leads. For narrow leads, it is the Tracy-Widom distribution, which appears in the problem of the largest eigenvalue of random matrices from the Gaussian unitary ensemble and in many other problems like the longest increasing subsequence of a permutation, directed polymers, or polynuclear growth. We also show that for wide leads the conductance follows a related, but different, distribution.  相似文献   

5.
We numerically investigate magnon-mediated spin transport through nonmagnetic metal/ferromagnetic insulator (NM/FI) heterostructures in the presence of Anderson disorder, and discover universal behaviors of the spin conductance in both one-dimensional (1D) and 2D systems. In the localized regime, the variance of logarithmic spin conductance σ2(lnGT) shows a universal linear scaling with its average ⟨lnGT⟩, independent of Fermi energy, temperature, and system size in both 1D and 2D cases. In 2D, the competition between disorder-enhanced density of states at the NM/FI interface and disorder-suppressed spin transport leads to a non-monotonic dependence of average spin conductance on the disorder strength. As a result, in the metallic regime, average spin conductance is enhanced by disorder, and a new linear scaling between spin conductance fluctuation rms(GT) and average spin conductance GT is revealed which is universal at large system width. These universal scaling behaviors suggest that spin transport mediated by magnon in disordered 2D NM/FI systems belongs to a new universality class, different from that of charge conductance in 2D normal metal systems.  相似文献   

6.
7.
8.
The conductance of a clean normal metal spanning between two superconductors (SNS structure) has been investigated. It is found that the conductance fluctuates periodically with the phase difference of two superconductors. When the pairing symmetry in one side of the superconductors is dx2-y2, the fluctuation period tends to be π instead of 2π, and the phase dependence of its conductance depends strongly on the orientation of the junction in contradistinction to the s-wave case. It can be used as a new method to determine the pairing symmetry of the high-Tc superconductors.  相似文献   

9.
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number approximately 0.18e/4pi. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.  相似文献   

10.
The energy distribution and the energy fluctuation in the Tsallis canonical ensemble are studied with the OLM formalism but following a new way. The resulting formula for the energy fluctuation is not the same as that in previous work [L.Y. Liu, J.L. Du, Physica A 387 (2008) 5417]. In discussing the application of an ideal gas, we find that the energy fluctuation can not be negligible in the thermodynamic limit, showing the ensemble nonequivalence for this case in Tsallis statistics. We investigate the energy fluctuation with a Tsallis generalized canonical distribution studied by Plastino and Plastino [A.R. Plastino, A. Plastino, Phys. Lett. A 193 (1994) 140] for describing a system in contact with a finite heat bath. For this situation, the two formulae for the energy fluctuation are shown to be equivalent, while the nonextensive parameter qq plays a very important role.  相似文献   

11.
We prove that general correlation functions of both ratios and products of characteristic polynomials of Hermitian random matrices are governed by integrable kernels of three different types: a) those constructed from orthogonal polynomials, b) those constructed from Cauchy transforms of the same orthogonal polynomials, and finally c) those constructed from both orthogonal polynomials and their Cauchy transforms. These kernels are related with the Riemann-Hilbert problem for orthogonal polynomials. For the correlation functions we obtain exact expressions in the form of determinants of these kernels. Derived representations enable us to study asymptotics of correlation functions of characteristic polynomials via the Deift-Zhou steepest-descent/stationary phase method for Riemann-Hilbert problems, and in particular to find negative moments of characteristic polynomials. This reveals the universal parts of the correlation functions and moments of characteristic polynomials for an arbitrary invariant ensemble of =2 symmetry class.  相似文献   

12.
李兆国  张帅  宋凤麒 《物理学报》2015,64(9):97202-097202
拓扑绝缘体因其无能量耗散的拓扑表面输运而备受关注, 揭示拓扑表面态因其 的贝利相位而产生的拓扑输运现象, 将有助于拓扑绝缘体相关器件的应用开发. 本文回顾了普适电导涨落(UCF) 揭示拓扑绝缘体奇异输运性质的研究进展. 通过调控温度、角度、门电压、垂直磁场和平行磁场等外部参量, 实现了对拓扑绝缘体的UCF 效应的系统研究, 证实了拓扑绝缘体中二维UCF 的输运现象, 并通过尺寸标度规律获得了UCF 的拓扑起源的实验证据, 讨论了拓扑表面态的UCF 的统计对称规律. 从而实现了对拓扑绝缘体UCF 效应的较为完整的理解.  相似文献   

13.
Combining the non-equilibrium Green's function method and density functional theory, we provide a first-principle scheme to calculate the universal conductance fluctuation (UCF) in quasi one-dimensional monatomic chains subject to a magnetic field. Our results show that for these monatomic chains, the amplitude of the UCF is much smaller than the previous theoretical prediction for mesoscopic conductors by Lee et al. [Phys. Rev. Lett. 55 (1985) 1622; Phys. Rev. B 36 (1987) 1039] The reason is that the ergodic hypothesis fails in these nanowires due to the confinement of geometry. We ascribe the phenomenon to the flux-dependent density of states fluctuation.  相似文献   

14.
We present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillings N=1, 2, 3 of an SU(4) model, we find universal scaling behavior of the conductance that is distinct from the standard SU(2) universal conductance, and concurs quantitatively with experiment. Our results also agree qualitatively with experimental differential conductance maps.  相似文献   

15.
We have found a solution to a model of tunneling between a multichannel Fermi liquid reservoir and an edge of the principal fractional quantum Hall liquid (FQHL) in the strong-coupling limit. The solution explains how the chiral edge propagation makes the universal two-terminal conductance of the FQHL fractionally quantized and different from that of a 1D Tomonaga-Luttinger liquid wire, where a similar model, but preserving the time reversal symmetry, predicts unsuppressed free-electron conductance.  相似文献   

16.
We investigate time-dependent properties of a single-particle model in which a random walker moves on a triangle and is subjected to nonfocal boundary conditions. This model exhibits spontaneous breaking of a Z 2 symmetry. The reduced size of the configuration space (compared to related many-particle models that also show spontaneous symmetry breaking) allows us to study the spectrum of the time evolution operator. We break the symmetry explicitly and find a stable phase, and a metastable phase which vanishes at a spinodal point. At this point, the spectrum of the time evolution operator has a gapless and universal band of excitations with a dynamical critical exponent z=1. Surprisingly, the imaginary parts of the eigenvalues E j(L) are equally spaced, following the rule . Away from the spinodal point, we find two time scales in the spectrum. These results are related to scaling functions for the mean path of the random walker and to first passage times. For the spinodal point, we find universal scaling behavior. A simplified version of the model which can be handled analytically is also presented.  相似文献   

17.
The role of irradiation induced defects and temperature in the conducting properties of single-walled (10, 10) carbon nanotubes has been analyzed by means of a first-principles approach. We find that divacancies modify strongly the energy dependence of the differential conductance, reducing also the number of contributing channels from two (ideal) to one. A small number of divacancies (5-9) brings up strong Anderson localization effects and a seemly universal curve for the resistance as a function of the number of defects. It is also shown that low temperatures, about 15-65 K, are enough to smooth out the fluctuations of the conductance without destroying the exponential dependence of the resistivity as a function of the tube length.  相似文献   

18.
19.
We report a thorough theoretical investigation on the quantum transport of a disordered four terminal device in the presence of Rashba spin orbit coupling (RSOC) in two dimensions. Specifically we compute the behaviour of the longitudinal (charge) conductance, spin Hall conductance and spin Hall conductance fluctuation as a function of the strength of disorder and Rashba spin orbit interaction using the Landauer Büttiker formalism via Green’s function technique. Our numerical calculations reveal that both the conductances diminish with disorder. At smaller values of the RSOC parameter, the longitudinal and spin Hall conductances increase, while both vanish in the strong RSOC limit. The spin current is more drastically affected by both disorder and RSOC than its charge counterpart. The spin Hall conductance fluctuation does not show any universality in terms of its value and it depends on both disorder as well as on the RSOC strength. Thus the spin Hall conductance fluctuation has a distinct character compared to the fluctuation in the longitudinal conductance. Further one parameter scaling theory is studied to assess the transition to a metallic regime as claimed in literature and we find no confirmation about the emergence of a metallic state induced by RSOC.  相似文献   

20.
We study numerically the conductance distribution function w(T) for the one‐dimensional Anderson model with random long‐range hopping described by the Power‐law Banded Random Matrix model at criticality. We concentrate on the case of two single‐channel leads attached to the system. We observe a smooth transition from localized to delocalized behavior in the conductance distribution by increasing b, the effective bandwidth of the model. Also, for b < 1 we show that w(ln T/Ttyp) is scale invariant, where Ttyp = exp 〈 ln T 〉 is the typical value of T. Moreover, we find that for T < Ttyp, w(ln T/Ttyp) shows a universal behavior proportional to (T/Ttyp)‐1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号