首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用基于密度泛函理论的第一性原理方法,研究了掺杂铁、钴和镍原子的锯齿型磷烯纳米带(ZPNR)的磁电子学特性.研究表明,掺杂和未掺杂ZPNR的结构都是稳定的.当处于非磁态时,未掺杂和掺杂钴原子的ZPNR为半导体,而掺杂铁或者镍原子的ZPNR为金属.自旋极化计算表明,未掺杂和掺杂钴原子的ZPNR无磁性,而掺杂铁或者镍原子的ZPNR有磁性,但只能表现出铁磁性.处于铁磁态时,掺杂铁原子的ZPNR为磁性半导体,而掺杂镍原子的ZPNR为磁性半金属.掺杂铁或者镍原子的ZPNR的磁性主要由杂质原子贡献,产生磁性的原因则是在ZPNR中存在未配对电子.掺杂位置对ZPNR的磁电子学特性有一定的影响.该研究对于发展基于磷烯纳米带的纳米电子器件具有重要意义.  相似文献   

2.
Through the first principle calculation, electronic properties of monolayer MoS2 doped with single, double, triple and tetra-atoms of P, Cl, O, Se at the surface S site are discussed. Among the substitutional dopant, our calculation results show that when P atoms are doped on a monolayer MoS2, a shift in the Fermi energy into the valence band is observed, making the system p-type. Meanwhile, band gap gradually decreases as increasing the number of P atoms. On the contrary, Cl is identified as a suitable n-type dopant. It is observed that Cl for initial three dopant behaved as magnetic and afterwards returned to non-magnetic behavior. The band gap of the Cl doped system is also dwindling gradually. Finally, O and Se doped systems have little effect on electronic properties near band gap. Such doping method at the S site, and the TDOS and PDOSs of each doping system provide a detailed of understanding toward working mechanism of the doped and the intrinsic semiconductors. This doping model opens up an avenue for further clarification in the doping systems as well as other dopant using this method.  相似文献   

3.
Two-dimensional 1T′ phase ReS2, a transition metal dichalcogenide, has a unique structure and electronic properties that are independent of thickness. The pure phase is a nonmagnetic semiconductor. Using density functional theory calculations, we show that ReS2 can be tuned to a magnetic semiconductor by doping with transition metal atoms. The magnetism mainly comes from the dopant transition metal and neighboring Re and S atoms as a result of competition between exchange splitting and crystal field splitting. ReS2 doped with Co can be considered as a promising diluted magnetic semiconductor owing to its strong ferromagnetism with long-range ferromagnetic interaction, high Curie temperature (above room temperature) and good stability. These findings may stimulate experimental validation and facilitate the development of new atomically thin diluted magnetic semiconductors based on transition metal dichalcogenides.  相似文献   

4.
The electronic and structural properties of substitutional and doped phosphorene with B, N and Si were studied using first principles calculations based on density functional theory. Moreover, electronic and structural properties of functionalized phosphorene slowly increasing the concentration of doping was investigated. Phosphorene strongly binds with doped functionalization; B doped phosphorene is the most stable configuration studied. Si doped phosphorene maintains the semiconductor characteristic. B and N doped phosphorene present n-type and p-type semiconductors, respectively. Doped phosphorene with odd number of Si is a semiconductor material, doped phosphorene with an odd number of B has n-type semiconductor characteristic, and doped phosphorene with odd number of N atoms has a p-type semiconductor behaviour. Doped phosphorene with even number of Si has a metallic characteristic, while B and N doped phosphorene with even number present a semiconductor behaviour. This work reveals that phosphorene electronic properties could be changed by introducing the dopants on the system, and the properties are affected by the increasing number of dopants on phosphorene sheet.  相似文献   

5.
2,3,7,8-四氯二苯并对二噁英(2,3,7,8-TCDD)是二噁英家族中危害人类和环境最显著的一种.设计一种高效,灵敏的吸附剂来检测和去除2,3,7,8-TCDD对人类和环境的影响是亟需解决的问题.本研究利用基于密度泛函理论(DFT)的计算模拟方法探索了本征磷烯对2,3,7,8-TCDD的吸附机理,并详细考察了掺杂Ti, Fe, Ca, Al金属原子后磷烯对2,3,7,8-TCDD吸附的影响.研究结果表明2,3,7,8-TCDD初始构型会影响磷烯对其吸附,当平躺于磷烯表面时有较大的吸附.而且掺杂金属原子的磷烯对2,3,7,8-TCDD的吸附也存在较大的影响,掺杂金属原子均增大了磷烯对2,3,7,8-TCDD的吸附,其中Ca掺杂磷烯>Fe掺杂磷烯>Ti掺杂磷烯>Al掺杂磷烯.研究结论对于2,3,7,8-TCDD的处理带来了新的思考方向,有望为二噁英的检测和去除提供有用的理论指导.  相似文献   

6.
本文采用第一性原理赝势平面波法, 计算并分析了稀土Gd掺杂磷烯的物理结构、电子结构、磁性以及光学性质. 计算表明: 在掺杂原子Gd附近引起了磷烯物理结构上的变化. 能带数量明显增多变密, 带隙变窄由0.921eV变为0.578eV. 同时, 由于Gd原子的4f和5d轨道电子两种自旋取向分布具有不对称性, 给体系引入了强磁性, 计算得到的自旋磁矩为7.470B. 磷烯材料的复介电函数是各向异性的, 同时可以得出磷烯材料在其它光学性质方面也是各向异性的. Gd掺杂后使材料的介电性能增强. 在紫外光的能量范围内, 不同极化方向上的反射率和损失函数的峰值降低, 说明Gd的掺入使材料对紫外光的敏感度有所减弱. 希望以上研究结果能为新型二维材料磷烯在光电和稀磁半导体材料的设计与开发方面提供理论依据.  相似文献   

7.
We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77μB/impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.  相似文献   

8.
The electronic and magnetic properties of oxychalcogenides LaCuSO and LaCuSeO with a layered ZrCuSiAs-type structure doped with impurity atoms M = Mn, Fe, and Co have been predicted using the first-principles FLAPW-GGA method. It has been shown that a partial substitution of 3d n < 9 metal atoms for copper atoms in the structure of the initial matrix leads to the transition of the oxychalcogenides (nonmagnetic semiconductors) to the state of a magnetic half-metal with 100% spin polarization of near-Fermi electrons. In this case, the magnetic and conducting properties of the LaCu1 ? x M x S(Se)O systems are determined by the states of the [Cu2(S,Se)2] blocks with magnetic impurities separated by nonmagnetic semiconducting [La2O2] blocks.  相似文献   

9.
《Physics letters. A》2020,384(6):126146
The structural, electronic and magnetic properties of arsenene were investigated using DFT (density functional theory). The charge transfer, large biding energies, and short bond lengths indicate that the doped structures are robust. Si, S, Ge and Se doping induce magnetic state in arsenene. The principal contribution to the magnetic moment is originated in the p-orbital of dopants and adjacent As atoms, as is suggested by the results of the application of PDOS (Projected Density of States). More importantly, the low effective mass of electrons in arsenene doped by Si, P and Sb implies high carrier mobility, which indicates the three types of structures are high efficiency n-type semiconductors.  相似文献   

10.
V,Cr,Mn掺杂MoS2磁性的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
曹娟  崔磊  潘靖 《物理学报》2013,62(18):187102-187102
基于第一性原理的自旋极化密度泛函理论分别研究了过渡金属V, Cr, Mn掺杂单层MoS2的电子结构、 磁性和稳定性. 结果表明: V和Mn单掺杂均能产生一定的磁矩, 而磁矩主要集中在掺杂的过渡金属原子上, Cr单掺杂时体系不显示磁性. 进一步讨论双原子掺杂MoS2 体系中掺杂原子之间的磁耦合作用发现, Mn掺杂的体系在室温下显示出稳定的铁磁性, 而V掺杂则表现出非自旋极化基态. 形成能的计算表明Mn掺杂的MoS2体系相对V和Cr 掺杂结构更稳定. 由于Mn掺杂的MoS2 不仅在室温下可以获得比较好的铁磁性而且其稳定性很高, 有望在自旋电子器件方面发挥重要的作用. 关键词: 2')" href="#">单层MoS2 掺杂 铁磁态 第一性原理  相似文献   

11.
The electronic and magnetic properties of wurtzite ZnS semiconductor doped with transition metal (Cr, Mn, Fe, Co, and Ni) atoms are studied by using the first-principle’s method in this paper. The ZnS bulk materials doped with Cr, Fe, and Ni are determined to be half-metallic, while those doped with Mn and Co impurities are found to be semiconducting. These doped transition metal ions have long range interactions mediated through the induced magnetic moments in anions and cations of host semiconductors. These doped ZnS-based diluted magnetic semiconductors seem to be good candidates for the future spintronic applications.  相似文献   

12.
通过基于广义梯度近似的总能密度泛函理论研究不同Mn掺杂浓度的ZnS(001)薄膜的电学和磁学特性. 计算单个Mn原子和两个Mn原子处于各种掺杂位置及不同的磁耦合状态时的能量稳定性.计算了单个Mn原子掺杂和两个Mn原子掺杂的ZnS(001)薄膜的态密度. 不同掺杂组态的p-d杂化的程度不同. 不同掺杂组态,Mn原子所处的晶场环境不同,所以不同掺杂组态的Mn的3d分波态密度峰的劈裂有很大的不同. 掺杂两个Mn原子时,得到三种稳定组态的基态都是反铁磁态. 分析了以上三种能量稳定的组态中,两个Mn原子在不同磁耦合状态下的3d态密度图. 当两原子为铁磁耦合时,由于d-d电子相互作用,使反键态的态密度峰明显加宽. 随着Mn掺杂浓度的增加,Mn原子有相互靠近,并围绕S原子形成団簇的趋势. 对于这样的组态,Mn原子之间为反铁磁耦合能量更低.  相似文献   

13.
Based on the first-principles calculations, we have investigated the stable geometries, electronic and magnetic properties of the graphene-like MgO monolayer with O atom substituted by B, C, N, and F atoms. The formation energy decreases in the order of B>C>N>F, which may be influenced by the different electronegativities. The band gaps of p-type doped MgO monolayers are tunable due to the emergence of impurity states within the band gap, while F-doped MgO monolayer realizes the transition from semiconductor to metal. The results show that p-type doped MgO monolayer exhibit magnetic behaviors due to polarizations of dopants and surrounding Mg or O atoms near the dopants, while no magnetism is observed in the case of F doped MgO monolayer. These results are potentially useful for spintronic applications and the development of magnetic nanostructures.  相似文献   

14.
陈余  关玉琴  赵春旺 《发光学报》2009,30(5):702-705
以Zener模型为基础,考虑反铁磁性交换作用对DMS材料居里温度的影响,理论计算得到了居里温度关于掺杂浓度和反铁磁性交换作用的二元函数,对GaAs ∶ TM(Ga,TM)As (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni)的居里温度做了详细分析得到:n型半导体居里温度有一个极大值,而p型掺杂是单调的递增。  相似文献   

15.
徐雷  戴振宏  隋鹏飞  王伟田  孙玉明 《物理学报》2014,63(18):186101-186101
基于密度泛函理论,计算了外来原子X(Al,P,Ga,As,Si)双空位替代掺杂氟化石墨烯的电子特性和磁性.通过对计算结果分析发现,与石墨烯的双空位掺杂类似,氟化石墨烯的双空位掺杂也是一种较为理想的掺杂方式.通过不同原子掺杂,氟化石墨烯的电子性质与磁性均发生很大变化:Al和Ga掺杂使氟化石墨烯由半导体变为金属,并且具有磁性;P和A8掺杂使氟化石墨烯变为自旋半导体;Si掺杂氟化石墨烯仍是半导体,只改变带隙且没有磁性.进一步讨论磁性产生机制获得了掺杂原子浓度与磁性的关系,并且发现不同掺杂情况的磁性是由不同原子的不同轨道电子引起的.双空位掺杂不仅丰富了氟化石墨烯的掺杂方式,其不同电磁特性也使此类掺杂结构在未来的电子器件中具有潜在应用.  相似文献   

16.
基于第一性原理的计算方法研究了纯CeO_2、Co掺杂CeO_2和同时引入氧空位Vo和Co掺杂的CeO_2稀磁半导体体系.通过计算体系的能带结构和态密度,探讨了该体系磁性产生的机制.计算发现,纯CeO_2体系不具有磁性;没有氧空位Vo的Co掺杂CeO_2体系中,Co离子之间通过O原子发生超交换反铁磁耦合,体系无铁磁性;当氧空位Vo和Co离子同时存在于CeO_2体系中时,Co离子之间通过氧空位Vo发生铁磁耦合,该体系表现出铁磁性能.另外,由氧空位Vo诱导的Co离子之间的铁磁耦合不仅发生在紧邻的两个Co离子,而且可以扩展到几个原子距离的长度.计算结果证明了氧空位Vo诱导铁磁性耦合机制.本文工作将为CeO_2基稀磁半导体体系制备与磁学性质的研究提供支持.  相似文献   

17.
本文利用基于密度泛函理论的第一性原理平面波赝势方法分别计算了本征及过渡金属掺杂单层MoS_2的晶格参数、电子结构和磁性性质.计算结果显示,过渡金属掺杂所引起的晶格畸变与杂质原子的共价半径有联系,但并不完全取决于共价半径的大小.分析电子结构可以看到,VIIB、VIII和IB族杂质中除Ag和Re外的掺杂体系都对外显示磁性,磁矩主要集中在掺杂的过渡金属原子上.掺杂体系的禁带区域都出现了数目不等的杂质能级,这些杂质能级主要由杂质的d、S的3p和Mo的4d轨道组成.  相似文献   

18.
Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom–doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5d, 6s, and B-2p, N-2p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.  相似文献   

19.
Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce–Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin–orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.  相似文献   

20.
杜成旭  王婷  杜颖妍  贾倩  崔玉亭  胡爱元  熊元强  毋志民 《物理学报》2018,67(18):187101-187101
采用基于密度泛函理论的第一性原理平面波超软赝势法,对纯Li Zn P, Ag/Cr单掺和Ag-Cr共掺Li Zn P新型稀磁半导体进行了结构优化,计算并分析了掺杂体系的电子结构、磁性、形成能、差分电荷密度和光学性质.结果表明:非磁性元素Ag单掺后,材料表现为金属顺磁性;磁性元素Cr单掺后, sp-d杂化使态密度峰出现劈裂,体系变成金属铁磁性;而Ag-Cr共掺后,其性质与Ag和Cr单掺完全不同,变为半金属铁磁性,带隙值略微减小,导电能力增强,同时形成能降低,原子间的相互作用和键强度增强,晶胞的稳定性增强.通过比较光学性质发现,掺杂体系的介电函数虚部和光吸收谱在低能区均出现新的峰值,且当Ag-Cr共掺时介电峰峰值最高,同时复折射率函数在低能区发生明显变化,吸收边向低能方向延展,体系对低频电磁波吸收加强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号