首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We propose a method for transferring quantum entangled states of two photonic cat-state qubits(cqubits)from two microwave cavities to the other two microwave cavities.This proposal is realized by using four microwave cavities coupled to a superconducting flux qutrit.Because of using four cavities with different frequencies,the inter-cavity crosstalk is significantly reduced.Since only one coupler qutrit is used,the circuit resource is minimized.The entanglement transfer is completed with a singlestep operation only,thus this proposal is quite simple.The third energy level of the coupler qutrit is not populated during the state transfer,therefore decoherence from the higher energy level is greatly suppressed.Our numerical simulations show that high-fidelity transfer of two-cqubit entangled states from two transmission line resonators to the other two transmission line resonators is feasible with current circuit QED technology.This proposal is universal and can be applied to accomplish the same task in a wide range of physical systems,such as four microwave or optical cavities,which are coupled to a natural or artificial three-level atom.  相似文献   

2.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.  相似文献   

3.
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.  相似文献   

4.
Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.  相似文献   

5.
王晓霞  张建奇  於亚飞  张智明 《中国物理 B》2011,20(11):110306-110306
We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities. In our scheme, each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields. During the gate operation, the quantum dots undergo no transition, while the system can acquire different phases conditional on different states of the quantum dots. With the application of the single-qubit operations, two-qubit controlled phase gates can be realized.  相似文献   

6.
石惠敏  於亚飞  张智明 《中国物理 B》2012,21(6):64205-064205
We propose a method of realizing a three-qubit quantum gate with a superconducting quantum interference device(SQUID) in a cavity.In this proposal,the gate operation involves the SQUID ground-states and the Fock states of cavity modes b and c.The two field-modes act as the controlling qubits,and the two SQUID states form the target qubit.Since only the metastable lower levels are involved in the gate operation,the gate is not affected by the SQUID decay rates.  相似文献   

7.
It is shown that the entanglement and the purity of corresponding density operator of two initially entangled qubits passing through the separate cavities can be controlled by the mode structures of the electric fields sustained in the cavities. Cavity mode structure can be used as a controlling parameter to realize the quantum gate operation and in preparing graph states.  相似文献   

8.
黄文进  方卯发  许雄 《中国物理 B》2022,31(1):10301-010301
The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.  相似文献   

9.
We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet (YIG) spheres, microwave cavities and a superconducting (SC) qubit. In the schemes, the YIGs are coupled to respective microwave cavities in resonant way, and the SC qubit is placed at the center of the cavities, which interacts with the cavities simultaneously. By exchanging the virtual photon, the cavities can indirectly interact in the far-detuning regime. Detailed protocols are presented to establish entanglement for two, three and arbitrary N magnons with reasonable fidelities.  相似文献   

10.
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed in two lower flux states, and the excited state [2〉 would not participate in the procedure. The SQUIDs undergo no transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum iogic in SQUID-system.  相似文献   

11.
Yao-Yao Jiang 《中国物理 B》2022,31(4):40307-040307
Shenvi et al. have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley (SKW) algorithm, but this search algorithm can only search one target state and use a specific search target state vector. Therefore, when there are more than two target nodes in the search space, the algorithm has certain limitations. Even though a multi-objective SKW search algorithm was proposed later, when the number of target nodes is more than two, the SKW search algorithm cannot be mapped to the same quotient graph. In addition, the calculation of the optimal target state depends on the number of target states m. In previous studies, quantum computing and testing algorithms were used to solve this problem. But these solutions require more Oracle calls and cannot get a high accuracy rate. Therefore, to solve the above problems, we improve the multi-target quantum walk search algorithm, and construct a controllable quantum walk search algorithm under the condition of unknown number of target states. By dividing the Hilbert space into multiple subspaces, the accuracy of the search algorithm is improved from pc=(1/2)-O(1/n) to pc=1-O(1/n). And by adding detection gate phase, the algorithm can stop when the amplitude of the target state becomes the maximum for the first time, and the algorithm can always maintain the optimal number of iterations, so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach $ t_{\rm f}=(\pi /2)\sqrt{2^{n-2}} $.  相似文献   

12.
We propose a scheme for realizing conditional quantum phase gates for two atoms that are distributed in two coupled cavities. Due to the resonant interaction in temporal evolution of the entire system, the gate operation time is greatly reduced as compared with that of the nonresonant schemes. We study the influence of imperfections in the interaction and the effect of decoherence and find the gate to be robust. We discuss the issue related to the practical implementation and show that the gate is accessible within the current cavity QED technology.  相似文献   

13.
We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating the cluster states with rf superconducting quantum interference devices (SQUIDs) coupled to a microwave cavity through adiabatic evolution of dark eigenstates. During the operation, the spontaneous emission is suppressed since the rf SQUIDs are always in the three lowest flux states. Considering the influence from the cavity decay with achievable
experimental parameters, we numerically analyze the success probability and the fidelity for generating the two-SQUID maximally entangled state and the controlled phase-shift gate by adiabatic passage.  相似文献   

14.
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.  相似文献   

15.
A controlled interference is proposed to reduce, by two orders of magnitude, the decoherence of a quantum gate for which the gate fidelity is limited by coupling to states other than the /0> and /1> qubit states. This phenomenon is demonstrated in an ultracold neutral atom implementation of a phase gate using qubits based on motional states in individual wells of an optical lattice.  相似文献   

16.
A scheme for implementing 2-qubit quantum controlled phase gate (QCPG) is proposed with two superconducting quantum interference devices (SQUIDs) in a cavity. The gate operations are realized within the two lower flux states of the SQUIDs by using a quantized cavity field and classical microwave pulses. Our scheme is achieved without any type of measurement, does not use the cavity mode as the data bus and only requires a very short resonant interaction of the SQUID-cavity system. As an application of the QCPG operation, we also propose a scheme for generating the cluster states of many SQUIDs.  相似文献   

17.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis.  相似文献   

18.
We present a theoretical analysis of the implementation of an entangling quantum gate between two trapped Ca+ ions which is based on the dipolar interaction among ionic Rydberg states. In trapped ions, the Rydberg excitation dynamics is usually strongly affected by mechanical forces due to the strong couplings between electronic and vibrational degrees of freedom in inhomogeneous electric fields. We demonstrate that this harmful effect can be overcome using dressed states that emerge from the microwave coupling of nearby Rydberg states. At the same time. these dressed states exhibit long-range dipolar interactions which we use to implement a controlled adiabatic phase gate. Our study highlights a route toward a trapped ion quantum processor in which quantum gates are realized independently of the vibrational modes.  相似文献   

19.
杨贞标  苏万钧 《中国物理》2007,16(2):435-440
An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.  相似文献   

20.
Quantum electrodynamics of excitons in a cavity is shown to be relevant to quantum operations. We present a theory of an integrable solid-state quantum controlled-phase gate for generating entanglement of two photons using a coupled nanodot-microcavity-fiber structure. A conditional phase shift of O(pi/10) is calculated to be the consequence of the giant optical nonlinearity keyed by the excitons in the cavities. Structural design and active control, such as electromagnetically induced transparency and pulse shaping, optimize the quantum efficiency of the gate operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号