首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that classical chaotic scattering has experimentally measurable consequences for the quantum conductance of semiconductor microstructures. These include the existence of conductance fluctuations-a sensitivity of the conductance to either Fermi energy or magnetic field-and weak-localization-a change in the average conductance upon applying a magnetic field. We develop a semiclassical theory and present numerical results for these two effects in which we model the microstructures by billiards attached to leads. We find that the difference between chaotic and regular classical scattering produces a qualitative difference in the fluctuation spectrum and weak-localization lineshape of chaotic and nonchaotic structures. While the semiclassical theory within the diagonal approximation accounts well for the weak-localization lineshape and for the spectrum of the fluctuations, we uncover a surprising failure of the semiclassical diagonal-approximation theory in describing the magnitude of these quantum transport effects.  相似文献   

2.
3.
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.  相似文献   

4.
《Physics Reports》1998,297(6):271-344
A semiclassical scattering approach is developed which can handle long-range (Coulomb) forces without the knowledge of the asymptotic wave function for multiple charged fragments in the continuum. The classical cross section for potential and inelastic scattering including fragmentation (ionization) is derived from first principles in a form which allows for a simple extension to semiclassical scattering amplitudes as a sum over classical orbits and their associated actions. The object of primary importance is the classical deflection function which can show regular and chaotic behavior. Applications to electron impact ionization of hydrogen and electron–atom scattering in general are discussed in a reduced phase space, motivated by partial fixed points of the respective scattering systems. Special emphasis, also in connection with chaotic scattering, is put on threshold ionization. Finally, motivated by the reflection principle for molecules, a semiclassical hybrid approach is introduced for photoabsorption cross sections of atoms where the time-dependent propagator is approximated semiclassically in a short-time limit with the Baker–Hausdorff formula. Applications to one- and two-electron atoms are followed by a presentation of double photoionization of helium, treated in combination with the semiclassical S-matrix for scattering.  相似文献   

5.
Recent experiments with Bose–Einstein condensates (BEC) in traps and speckle potentials have explored the dynamical regime in which the evolving BEC clouds localize due to the influence of classical dynamics. The growth of their mean energy is effectively arrested. This is in contrast with the well-known localization phenomena that originate due to quantum interferences. We show that classically induced localization can also be obtained in a classically chaotic, non-interacting system. In this work, we study the classical and quantum dynamics of non-interacting particles in a double-barrier structure. This is essentially a non-KAM system and, depending on the parameters, can display chaotic dynamics inside the finite well between the barriers. However, for the same set of parameters, it can display nearly regular dynamics above the barriers. We exploit this combination of two qualitatively different classical dynamical features to obtain saturation of energy growth. In the semiclassical regime, this classical mechanism strongly influences the quantum behaviour of the system.  相似文献   

6.
Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose two different methods for semiclassical quantization. The first method is based upon the harmonic inversion of semiclassical recurrence functions. A band-limited periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. The frequencies of the periodic orbit signal are the semiclassical eigenvalues, and are determined by either linear predictor, Padé approximant, or signal diagonalization. The second method is based upon the direct application of the Padé approximant to the periodic orbit sum. The Padé approximant allows the resummation of the, typically exponentially, divergent periodic orbit terms. Both techniques do not depend on the existence of a symbolic dynamics, and can be applied to bound as well as to open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.  相似文献   

7.
We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic-field dependence. This semiclassical treatment accounts for current conservation.  相似文献   

8.
Resonances of the time evolution (Frobenius-Perron) operator P for phase space densities have recently been shown to play a key role for the interrelations of classical, semiclassical, and quantum dynamics. Efficient methods to determine resonances are thus in demand, in particular, for Hamiltonian systems displaying a mix of chaotic and regular behavior. We present a powerful method based on truncating P to a finite matrix which not only allows us to identify resonances but also the associated phase space structures. It is demonstrated to work well for a prototypical dynamical system.  相似文献   

9.
A semiclassical theory of a dissipative Henon—Heiles system is proposed. Based on -scaling of an equation for the evolution of the Wigner quasiprobability distribution function in the presence of dissipation and thermal diffusion, we derive a semiclassical equation for quantum fluctuations, governed by the dissipation and the curvature of the classical potential. We show how the initial quantum noise gets amplified by classical chaotic diffusion, which is expressible in terms of a correlation of stochastic fluctuations of the curvature of the potential due to classical chaos, and ultimately settles down to equilibrium under the influence of dissipation. We also establish that there exists a critical limit to the expansion of phase space. The limit is set by chaotic diffusion and dissipation. Our semiclassical analysis is corroborated by numerical simulation of a quantum operator master equation.  相似文献   

10.
11.
We present a semiclassical approach to eigenfunction statistics in chaotic and weakly disordered quantum systems which goes beyond random matrix theory, supersymmetry techniques, and existing semiclassical methods. The approach is based on a generalization of Berry's random wave model, combined with a consistent semiclassical representation of spatial two-point correlations. We derive closed expressions for arbitrary wave-function averages in terms of universal coefficients and sums over classical paths, which contain, besides the supersymmetry results, novel oscillatory contributions. Their physical relevance is demonstrated in the context of Coulomb blockade physics.  相似文献   

12.
Martin Sieber 《Pramana》2009,73(3):543-551
We study the semiclassical structure of resonance eigenstates of open chaotic systems. We obtain semiclassical estimates for the weight of these states on different regions in phase space. These results imply that the long-lived right (left) eigenstates of the non-unitary propagator are concentrated in the semiclassical limit ħ → 0 on the backward (forward) trapped set of the classical dynamics. On this support the eigenstates display a self-similar behaviour which depends on the limiting decay rate.  相似文献   

13.
An analysis of the semiclassical regime of the quantum-classical transition is given for open, bounded, one-dimensional chaotic dynamical systems. Environmental fluctuations-characteristic of all realistic dynamical systems-suppress the development of a fine structure in classical phase space and damp nonlocal contributions to the semiclassical Wigner function, which would otherwise invalidate the approximation. This dual regularization of the singular nature of the semiclassical limit is demonstrated by a numerical investigation of the chaotic Duffing oscillator.  相似文献   

14.
We present a semiclassical theory for the scattering matrix S of a chaotic ballistic cavity at finite Ehrenfest time. Using a phase-space representation coupled with a multibounce expansion, we show how the Liouville conservation of phase-space volume decomposes S as S=S(cl) plus sign in circle S(qm). The short-time, classical contribution S(cl) generates deterministic transmission eigenvalues T=0 or 1, while quantum ergodicity is recovered within the subspace corresponding to the long-time, stochastic contribution S(qm). This provides a microscopic foundation for the two-phase fluid model, in which the cavity acts like a classical and a quantum cavity in parallel, and explains recent numerical data showing the breakdown of universality in quantum chaotic transport in the deep semiclassical limit. We show that the Fano factor of the shot-noise power vanishes in this limit, while weak localization remains universal.  相似文献   

15.
M. Lombardi  A. Matzkin 《Laser Physics》2010,20(5):1215-1220
The relationship between classically chaotic dynamics and the entanglement properties of the corresponding quantum system is examined in the semiclassical limit. Numerical results are computed for a modified kicked top, keeping the classical dynamics constant while investigating the entanglement for several versions of the corresponding quantum system characterized by a different value of the effective Planck constant eff. Our findings indicate that as eff → 0, the apparent signatures of classical chaos in the entanglement properties, such as characteristic oscillations in the time-dependence of the linear entropy, can also be obtained in the regular regime. These results suggest that entanglement is not a universal marker of chaotic dynamics of the corresponding classical system.  相似文献   

16.
17.
We address the decay in open chaotic quantum systems and calculate semiclassical corrections to the classical exponential decay. We confirm random matrix predictions and, going beyond, calculate Ehrenfest time effects. To support our results we perform extensive numerical simulations. Within our approach we show that certain (previously unnoticed) pairs of interfering, correlated classical trajectories are of vital importance. They also provide the dynamical mechanism for related phenomena such as photoionization and photodissociation, for which we compute cross-section correlations. Moreover, these orbits allow us to establish a semiclassical version of the continuity equation.  相似文献   

18.
《Physics Reports》1988,163(4):205-297
In the semiclassical limit, quantum mechanics shows differences between classically integrable abd chaotic systems. Here we review recent developments in this field. Topics dealt with include formal integrability of quantum mechanics, semiclassical quantization, statistical properties of eigenvalues, semiclassical eigenfunctions, effects on the time-evolution and localization due to classical diffusion. A large bibliography supplements the text.  相似文献   

19.
Two particles, initially in a product state, become entangled when they come together and start to interact. Using semiclassical methods, we calculate the time evolution of the corresponding reduced density matrix rho(1), obtained by integrating out the degrees of freedom of one of the particles. We find that entanglement generation sensitively depends (i) on the interaction potential, especially on its strength and range, and (ii) on the nature of the underlying classical dynamics. Under general statistical assumptions, and for short-ranged interaction potentials, we find that P(t) decays exponentially fast in a chaotic environment, whereas it decays only algebraically in a regular system. In the chaotic case, the decay rate is given by the golden rule spreading of one-particle states due to the two-particle coupling, but cannot exceed the system's Lyapunov exponent.  相似文献   

20.
Starting from the semiclassical dynamical zeta function for chaotic Hamiltonian systems we use a combination of the cycle expansion method and a functional equation to obtain highly excited semiclassical eigenvalues. The power of this method is demonstrated for the anisotropic Kepler problem, a strongly chaotic system with good symbolic dynamics. An application of the transfer matrix approach of Bogomolny is presented leading to a significant reduction of the classical input and to comparable accuracy for the calculated eigenvalues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号