首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We propose a versatile arrangement for the trapping and manipulation of single atoms in optical tweezers formed by the direct image of a spatial light modulator (SLM). The scheme incorporates a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole-force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.  相似文献   

2.
The localized enhanced near field on nanostructures has been attracting much attention for a template for size-selective optical trapping (tweezers) beyond the diffraction limit. The near-field optical trapping has mainly been studied using metallic substrates such as Au nanodot pairs, periodic Al nanoslits, nanoapertures on an Au film, etc. In this paper, we newly propose a Mie-scattered-near-field optical trapping scheme for size-selective photocatalytic application using pairs of poly-rutile TiO2 nanospheres. The optical intensity distribution in a 3D-nanogap space between the nanospheres was simulated by a 3D FDTD method. The simulation system consists of the two TiO2 nanospheres placed on a silica substrate in water. The 400-nm excitation laser is used for both the near-field trapping and the photocatalyst excitation. The optical trapping forces were calculated based on the near-field optical intensity distribution. The trapping stiffness for 20-nm polystyrene sphere at a gap distance of 20 nm was 6.4 pN/nm/W. The optical force vector shows that the object like virus can be trapped with sufficient forces into the nanogap space and then is driven into the direct surface of the TiO2 sphere. This result suggests that this system works as a photocatalytic trapping for killing virus, protein, etc.  相似文献   

3.
Improvement of Transverse Trapping Efficiency of Optical Tweezers   总被引:1,自引:0,他引:1       下载免费PDF全文
Transverse trapping efficiency of optical tweezers is important in many force measurement applications. For improving the transverse trapping efficiency, we propose a simple scheme in which the Gaussian beam does not fully cover the aperture of the objective. Both experiment and theoretical simulation qualitatively demonstrate the scheme. It is expected that the results will be useful for the design of optical tweezers.  相似文献   

4.
王玥  梁言生  严绍辉  曹志良  蔡亚楠  张艳  姚保利  雷铭 《物理学报》2018,67(13):138701-138701
传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)GerchbergSaxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.  相似文献   

5.
周哲海  祝连庆 《中国物理 B》2015,24(2):28704-028704
Multiple optical trapping with high-order axially symmetric polarized beams(ASPBs) is studied theoretically,and a scheme based on far-field optical trapping with ASPBs is first proposed.The focused fields and the corresponding gradient forces on Rayleigh dielectric particles are calculated for the scheme.The calculated results indicate that multiple ultra-small focused spots can be achieved,and multiple nanometer-sized particles with refractive index higher than the ambient can be trapped simultaneously near these focused spots,which are expected to enhance the capabilities of traditional optical trapping systems and provide a solution for massive multiple optical trapping of nanometer-sized particles.  相似文献   

6.
张慧  李涛  尹亚玲  李兴佳  夏勇  印建平 《中国物理 B》2016,25(8):87802-087802
We propose a novel scheme of optical confinement for atoms by using a concave grating reflector.The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination.Especially,the light intensity at the focal point is about 100 times higher than that of the incident light.Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms.We discuss the feasibility of the structure serving as an optical dipole trap.Our results are as follows.(i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms,(ⅱ) The maximum trapping potential is ~1.14 mK in the optical trap,which is high enough to trap cold ~(87)Rb atoms from a standard magneto-optical trap with a temperature of 120 μK,and the maximum photon scattering rate is lower than 1/s.(ⅲ) Such a microtrap array can also manipulate and control cold molecules,or microscopic particles.  相似文献   

7.
Analytical propagation expression of a radial Airy array beam in coherent and incoherent combination passing through paraxial ABCD system is derived, and used to investigate the effect of combination scheme, array orientation and initial phase of Airy beamlet on propagation dynamics of the resulting beam in free space, where optical spot array and vortex array with different shapes are also found, respectively. And then taking four-beamlet Airy array beam in same array orientation as an example, square optical spot array obtained in focal field can be used for simultaneous trapping multiple Rayleigh particles with relative refractive index larger than 1. The transverse gradient forces serving as restore forces tend to push particles at different initial positions to their individual optical spot center. The analysis of trapping stability indicates that larger input peak intensity of Airy beamlet and smaller particle size are benefit to trapping particle owing to many deeper potential wells. Vortex array produced by coherent combined Airy array beam in this paper is expected to be useful for simultaneous trapping microparticles with relative refractive index smaller than 1.  相似文献   

8.
Lin PT  Lee PT 《Optics letters》2011,36(3):424-426
We propose that a tapered photonic crystal waveguide design can unify optical trapping and transport functionalities to advance the controllability of optical manipulation. Subwavelength particles can be trapped by a resonance-enhanced field and transported to a specified position along the waveguide on demand by varying the input wavelength. A simulated transport ability as high as 148 (transport distance/wavelength variation) is obtained by the waveguide with 0.1° tilted angle. Stable trapping of a 50 nm polystyrene particle can be achieved with input power of 7 mW. We anticipate that this design would be beneficial for future life science research and optomechanical applications.  相似文献   

9.
We propose a novel single-beam multiple 3D optical trapping scheme using higher polarization order axially-symmetric polarized beams in an aplanatic focusing system. We calculate numerically the intensity distribution near the focus which presents a multi-focus-spot pattern and provides the possibility of multiple optical trapping. We also calculate the corresponding gradient force distribution near the focus. Finally we introduce a 3D optical chain by combining the single-beam system with a single diffractive optical element.  相似文献   

10.
We propose a novel single-beam multiple 3D optical trapping scheme using higher polarization order axially-symmetric polarized beams in an aplanatic focusing system. We calculate numerically the intensity distribution near the focus which presents a multi-focus-spot pattern and provides the possibility of multiple optical trapping. We also calculate the corresponding gradient force distribution near the focus. Finally we introduce a 3D optical chain by combining the single-beam system with a single diffract...  相似文献   

11.
We propose a two-color scheme of atom waveguides and one-dimensional (1D) optical lattices using evanescent wave fields of different transverse modes around an optical micro/nano-fiber. The atom guide potential can be produced when the optical fiber carries a red-detuned light with TE01 mode and a blue-detuned light with HEll mode, and the 1D optical lattice potential can be produced when the red-detuned light is transformed to the superposition of the TE01 mode and HE11 mode. The two trapping potentials can be transformed to each other for accurately controlling mode transformation for the red-detuned light. This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.  相似文献   

12.
王琴  李胜强  侯顺永  夏勇  汪海玲  印建平 《中国物理 B》2014,23(1):13701-013701
We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.  相似文献   

13.
We propose and analyze an on-chip all-optical dynamic tuning scheme for coupled nonlinear resonators employing a single control beam injected in parallel with a signal beam. We show that the nonlinear Kerr response can be used to dynamically switch the spectral properties between a "dark state" and electromagnetically induced transparency configurations. Such a scheme can be realized in integrated optical applications for pulse trapping and delaying.  相似文献   

14.
We propose a method for recording an optical wave field that is based on diffraction of the optical wave field by two screens that are complementary to each other. We show that the new method ensures the measurement of the phase of the wave field with a high accuracy and spatial resolution. An optical scheme for implementing the diffraction method and an algorithm for reconstructing the phase of the wave field from the measurement data are developed. We perform a computer simulation of the experiment on recording the optical wave field based on the method proposed.  相似文献   

15.
原子光学晶格为精确操控中性原子和研究某些基本物理问题提供了一种方法。提出了一种利用单光束照明余弦型振幅光栅与透镜组合系统实现冷原子或冷分子囚禁的可控制光学四阱新方案,计算了四阱的光强分布,讨论了从光学四阱到双阱或单阱的演化过程,并导出了光学四阱的几何参量、光强分布、强度梯度及其曲率与光学透镜系统参量间的解析关系,获得了四阱间距与光栅空间频率的关系。研究表明通过改变余弦光栅的空间频率即可实现从光学四阱到双阱或单阱的连续双向演化。  相似文献   

16.
处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动.由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收...  相似文献   

17.
We propose a very simple scheme to slow down the usual exponential decay of upper state population in an atomic two-level system considerably. The scheme uses an additional possibly intense field with frequency lower than the total decay width of the atomic transition. This allows for additional decay channels with the exchange of one or more low-frequency photons during an atomic transition. These channels may then interfere with each other. The intensity and frequency of the low-frequency field are shown to act as two control parameters modifying duration and amount of the population trapping. An extension of the scheme to include transitions to more than one lower state is straightforward.  相似文献   

18.
王书林  丁岚  徐文 《中国物理 B》2017,26(1):17301-017301
We theoretically propose a scheme to realize the dynamic control of the properties of the terahertz(THz) rainbow trapping effect(RTE) based on a silicon-filled graded grating(SFGG) in a relatively broad band via optical pumping.Through the theoretical analysis and finite-element method simulations, it is conceptually demonstrated that the band of the RTE can be dynamically tuned in a range of ~0.06 THz. Furthermore, the SFGG can also be optically switched between a device for the RTE and a waveguide for releasing the trapped waves. The results obtained here may imply applications for the tunable THz plasmonic devices, such as on-chip optical buffers, broad band slow-light systems, and integrated optical filters.  相似文献   

19.
周琦  陆俊发  印建平 《物理学报》2015,64(5):53701-053701
提出了一种利用双周期弧向非满额相位调制的方法产生双空心光束的方案. 当准直氦氖激光通过1.5 mm半径透光孔照射到该相位图样时, 在200 mm成像透镜像空间获得长30 mm, 间距57.6μm, 单管束宽度0.11–0.14 mm的双空心光束. 该方案结构简单, 产生的双空心光束具有较好的可控性, 双光管间距由相位调制因子p决定, 能够实现从双空心光束到单空心光束的双向演化. 对所提出的方案进行了实验研究并得到与理论相符的结果. 利用多种组合方式讨论了将该方案拓展到蓝失谐光学囚禁势阱, 可以实现可控的空心双光阱、四光阱与光学晶格等, 有望在冷原子、冷分子囚禁与操控等领域的实验研究中发挥重要作用.  相似文献   

20.
As is well known in atomic optics, the nonadiabatic transitions induce the loss of atoms trapped in a magnetic well which seriously affects the formation of the Bose-Einstein condensates. Electrostatic traps have widespread applications in molecular optics. While, for most existing electrostatic traps, the electric field strength in the trap center is nearly zero which may cause the nonadiabatic transitions. Especially for a chip-based microtrap, ingenious design is need to overcome this problem. In the paper, we propose a novel electrostatic microtrap composed of four arc-shaped electrodes. The influences of the voltages and the geometrical parameters of the electrodes on the electric field strength as well as the height of the potential well are studied. The distributions of electrostatic field are numerically calculated. We firstly simulate the trajectory of one molecule in the processes of loading and trapping. After that, we simulate the movements of a large number of molecules using the method of Monte Carlo. Then we calculate the temperature of trapped cold molecules. After that, we analyze the impacts of voltages and the geometrical parameters on the efficiency of our microtrap. At last, we show that our scheme can evolve into electrostatic microtrap arrays which should be a powerful tool for a variety of basic research and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号