首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The biosynthetic gene cluster for the enediyne antitumor antibiotic neocarzinostatin (NCS) was localized to 130 kb continuous DNA from Streptomyces carzinostaticus ATCC15944 and confirmed by gene inactivation. DNA sequence analysis of 92 kb of the cloned region revealed 68 open reading frames (ORFs), 47 of which were determined to constitute the NCS cluster. Sequence analysis of the genes within the NCS cluster suggested dNDP-D-mannose as a precursor for the deoxy aminosugar, revealed two distinct type I polyketide synthases (PKSs), and supported a convergent model for NCS chromophore biosynthesis from the deoxy aminosugar, naphthoic acid, and enediyne core building blocks. These findings shed light into deoxysugar biosynthesis, further support the iterative type I PKS paradigm for enediyne core biosynthesis, and unveil a mechanism for microbial polycyclic aromatic polyketide biosynthesis by an iterative type I PKS.  相似文献   

2.
The biosynthetic gene cluster for the pluramycin-type antitumor antibiotic hedamycin has been cloned from Streptomyces griseoruber. Sequence analysis of the 45.6 kb region revealed a variety of unique features such as a fabH homolog (KSIII), an acyltransferase (AT) gene, a set of type I polyketide synthase (PKS) genes, and two putative C-glycosyltransferase genes. As the first report of the cloning of the biosynthetic gene cluster for the pluramycin antibiotics, this work suggests that the biosynthesis of pluramycins utilize an iterative type I PKS system for the generation of a novel starter unit that subsequently primes the type II PKS system. It also implicates the involvement of a second catalytic ketosynthase (KSIII) to regulate this unusual priming step. Gene disruption is used to confirm the importance of both type I and II PKS genes for the biosynthesis of hedamycin.  相似文献   

3.
In this issue of Chemistry & Biology, a novel priming mechanism is proposed for aromatic polyketide biosynthesis, with an iterative type I polyketide synthase generating a starter unit primed for a type II polyketide synthase. This novel priming system participates in hedamycin biosynthesis, a DNA alkylating agent.  相似文献   

4.
The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs--the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-alpha-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial biosynthesis and establish a unified paradigm for the biosynthesis of enediyne polyketides.  相似文献   

5.
Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin‐producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl‐carrier protein (ACP)‐encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3‐oxoadipyl‐CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3‐Oxoadipyl‐CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.  相似文献   

6.
A biosynthetic gene cluster containing five genes, alt1-5, was cloned from Alternaria solani, a causal fungus of early blight disease to tomato and potato. Homology searching indicated that the alt1, 2, and 3 genes code for cytochrome P450s and the alt4 gene for a FAD-dependent oxygenase/oxidase. The alt5 gene encodes a polyketide synthase (PKS), named PKSN, that was found to be an iterative type I complex reduced-type PKS with a C-methyltransferase domain. To identify the PKSN function, the alt5 gene was introduced into the fungal host Aspergillus oryzae under an alpha-amylase promoter. The transformant produced a polyketide compound, named alternapyrone, whose structure is shown to be 3,5-dimethyl-4-hydroxy-6-(1,3,5,7,11,13-hexamethyl-3,5,11-pentadecatrienyl)-pyran-2-one. Labeling experiments confirmed that alternapyrone is a decaketide with octa-methylation from methionine on every C(2) unit except the third unit.  相似文献   

7.
The polyketide antibiotic mupirocin (pseudomonic acid) produced by Pseudomonas fluorescens NCIMB 10586 competitively inhibits bacterial isoleucyl-tRNA synthase and is useful in controlling Staphylococcus aureus, particularly methicillin-resistant Staphylococcus aureus. The 74 kb mupirocin biosynthesis cluster has been sequenced, and putative enzymatic functions of many of the open reading frames (ORFs) have been identified. The mupirocin cluster is a combination of six larger ORFs (mmpA-F), containing several domains resembling the multifunctional proteins of polyketide synthase and fatty acid synthase type I systems, and individual genes (mupA-X and macpA-E), some of which show similarity to type II systems (mupB, mupD, mupG, and mupS). Gene knockout experiments demonstrated the importance of regions in mupirocin production, and complementation of the disrupted gene confirmed that the phenotypes were not due to polar effects. A model for mupirocin biosynthesis is presented based on the sequence and biochemical evidence.  相似文献   

8.
Polyketide biosynthesis is catalyzed by polyketide synthase (PKS) and three types of bacterial PKS are known to date. Feeding experiments with isotope-labeled precursors established the polyketide origin of the macrotetrolides, but the labeling pattern cannot be rationalized according to the established PKS paradigm. Genetic analysis of the macrotetrolide biosynthesis unveiled an unprecedented organization for a polyketide gene cluster that features five genes encoding discrete ketoacyl synthase (KS) and four genes encoding discrete ketoreductase (KR) but lacking an acyl carrier protein (ACP). Macrotetrolide biosynthesis is proposed to involve a novel type II PKS that acts directly on acyl CoA substrates, functions noniteratively, and catalyzes both C-C and C-O bond formation. These findings demonstrate once again Nature's versatility in making complex molecules and suggests new strategies for PKS engineering to further expand the scope and diversity of polyketide library. They also should serve as an inspiration in searching for PKS with novel chemistry for combinatorial biosynthesis.  相似文献   

9.
BACKGROUND: Recently developed tools for the genetic manipulation of modular polyketide synthases (PKSs) have advanced the development of combinatorial biosynthesis technologies for drug discovery. Although many of the current techniques involve engineering individual domains or modules of the PKS, few experiments have addressed the ability to combine entire protein subunits from different modular PKSs to create hybrid polyketide pathways. We investigated this possibility by in vivo assembly of heterologous PKS complexes using natural and altered subunits from related macrolide PKSs. RESULTS: The pikAI and pikAII genes encoding subunits 1 and 2 (modules 1-4) of the picromycin PKS (PikPKS) and the eryAIII gene encoding subunit 3 (modules 5-6) of the 6-deoxyerythronolide B synthase (DEBS) were cloned in two compatible Streptomyces expression vectors. A strain of Streptomyces lividans co-transformed with the two vectors produced the hybrid macrolactone 3-hydroxynarbonolide. Co-expression of the same pik genes with the gene for subunit 3 of the oleandomycin PKS (OlePKS) was also successful. A series of hybrid polyketide pathways was then constructed by combining PikPKS subunits 1 and 2 with modified DEBS3 subunits containing engineered domains in modules 5 or 6. We also report the effect of junction location in a set of DEBS-PikPKS fusions. CONCLUSIONS: We show that natural as well as engineered protein subunits from heterologous modular PKSs can be functionally assembled to create hybrid polyketide pathways. This work represents a new strategy that complements earlier domain engineering approaches for combinatorial biosynthesis in which complete modules or PKS protein subunits, in addition to individual enzymatic domains, are used as building blocks for PKS engineering.  相似文献   

10.
The biosynthesis of the potent environmental carcinogen aflatoxin B(1) is initiated by norsolorinic acid synthase (NorS), a complex of an iterative type I polyketide synthase and a specialized yeast-like pair of fatty acid synthases. NorS has been partially purified from Aspergillus parasiticus, has been found to have a mass of approximately 1.4 x 10(6) Da, and carries out the synthesis of norsolorinic acid in the presence of acetylCoA, malonylCoA, and NADPH where hexanoylCoA is not a free intermediate. The N-acetylcysteamine thioester of hexanoic acid can substitute for the catalytic functions of HexA/B to initiate norsolorinic acid synthesis by the complex in the presence of only malonylCoA. An alpha(2)beta(2)gamma(2) stoichiometry is proposed for NorS in keeping with its estimated mass and the observed dimeric or higher-order quarternary structures of PKS and FAS enzymes.  相似文献   

11.
BACKGROUND: Spinosad is a mixture of novel macrolide secondary metabolites produced by Saccharopolyspora spinosa. It is used in agriculture as a potent insect control agent with exceptional safety to non-target organisms. The cloning of the spinosyn biosynthetic gene cluster provides the starting materials for the molecular genetic manipulation of spinosad yields, and for the production of novel derivatives containing alterations in the polyketide core or in the attached sugars. RESULTS: We cloned the spinosad biosynthetic genes by molecular probing, complementation of blocked mutants, and cosmid walking, and sequenced an 80 kb region. We carried out gene disruptions of some of the genes and analyzed the mutants for product formation and for the bioconversion of intermediates in the spinosyn pathway. The spinosyn gene cluster contains five large open reading frames that encode a multifunctional, multi-subunit type I polyketide synthase (PKS). The PKS cluster is flanked on one side by genes involved in the biosynthesis of the amino sugar forosamine, in O-methylations of rhamnose, in sugar attachment to the polyketide, and in polyketide cross-bridging. Genes involved in the early common steps in the biosynthesis of forosamine and rhamnose, and genes dedicated to rhamnose biosynthesis, were not located in the 80 kb cluster. CONCLUSIONS: Most of the S. spinosa genes involved in spinosyn biosynthesis are found in one 74 kb cluster, though it does not contain all of the genes required for the essential deoxysugars. Characterization of the clustered genes suggests that the spinosyns are synthesized largely by mechanisms similar to those used to assemble complex macrolides in other actinomycetes. However, there are several unusual genes in the spinosyn cluster that could encode enzymes that generate the most striking structural feature of these compounds, a tetracyclic polyketide aglycone nucleus.  相似文献   

12.
The unusual nitro‐substituted polyketides aureothin, neoaureothin (spectinabilin), and luteoreticulin, which are produced by diverse Streptomyces species, point to a joint evolution. Through rational genetic recombination and domain exchanges we have successfully reprogrammed the modular (type I) aur polyketide synthase (PKS) into a synthase that generates luteoreticulin. This is the first rational transformation of a modular PKS to produce a complex polyketide that was initially isolated from a different bacterium. A unique aspect of this synthetic biology approach is that we exclusively used genes from a single biosynthesis gene cluster to design the artificial pathway, an avenue that likely emulates natural evolutionary processes. Furthermore, an unexpected, context‐dependent switch in the regiospecificity of a pyrone methyl transferase was observed. We also describe an unprecedented scenario where an AT domain iteratively loads an extender unit onto the cognate ACP and the downstream ACP. This aberrant function is a novel case of non‐colinear behavior of PKS domains.  相似文献   

13.
The antimalarial agent cladosporin is a nanomolar inhibitor of the Plasmodium falciparum lysyl‐tRNA synthetase, and exhibits activity against both blood‐ and liver‐stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it is biosynthesized by a highly reducing (HR) and a non‐reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism and subsequent heterologous expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the identity of the putative gene cluster. Incorporation of a pentaketide intermediate analogue indicated a 5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. Advanced‐intermediate analogues were synthesized and incorporated by Cla3 to furnish new cladosporin analogues. A putative lysyl‐tRNA synthetase resistance gene was identified in the cladosporin gene cluster. Analysis of the active site emphasizes key structural features thought to be important in resistance to cladosporin.  相似文献   

14.
He J  Hertweck C 《Chemistry & biology》2003,10(12):1225-1232
Analysis of the type I modular polyketide synthase (PKS) involved in the biosynthesis of the rare nitroaryl polyketide metabolite aureothin (aur) from Streptomyces thioluteus HKI-227 has revealed only four modules to catalyze the five polyketide chain extensions required. By heterologous expression of the aur PKS cluster, direct evidence was obtained that these modules were sufficient to support aureothin biosynthesis. It appears that one module catalyzes two successive cycles of chain extension, one of the first examples of a PKS in which such iteration or "stuttering" is required to produce the normal polyketide product. In addition, lack of a specified loading domain implicates a novel PKS priming mechanism involving the unique p-nitrobenzoate starter unit. The 27 kb aur gene cluster also encodes a novel N-oxidase, which may represent the first member of a new family of such enzymes.  相似文献   

15.
The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.  相似文献   

16.
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.  相似文献   

17.
BACKGROUND: The macrolide antibiotic erythromycin A, like other complex aliphatic polyketides, is synthesised by a bacterial modular polyketide synthase (PKS). Such PKSs, in contrast to other fatty acid and polyketide synthases which work iteratively, contain a separate set or module of enzyme activities for each successive cycle of polyketide chain extension, and the number and type of modules together determine the structure of the polyketide product. Thus, the six extension modules of the erythromycin PKS (DEBS) together catalyse the production of the specific heptaketide 6-deoxyerythronolide B. RESULTS: A mutant strain of the erythromycin producer Saccharopolyspora erythraea, which accumulates the aglycone intermediate erythronolide B, was found unexpectedly to produce two novel octaketides, both 16-membered macrolides. These compounds were detectable in fermentation broths of wild-type S. erythraea, but not in a strain from which the DEBS genes had been specifically deleted. From their structures, both of these octaketides appear to be aberrant products of DEBS in which module 4 has 'stuttered', that is, has catalysed two successive cycles of chain extension. CONCLUSIONS: The isolation of novel DEBS-derived octaketides provides the first evidence that an extension module in a modular PKS has the potential to catalyse iterative rounds of chain elongation like other type I FAS and PKS systems. The factors governing the extent of such 'stuttering' remain to be determined.  相似文献   

18.
Constructing a mutant strain of single gene disruption is the basis for the study of gene function and metabolomics. Systematic and complete genome sequencing is the basis of genetic manipulation. In the case of a little knowledge about the Streptomyces lydicus genome and the speculation that polyketide synthases (type I) might be responsible for the polyketide side chain biosynthesis of streptolydigin, a 588-bp fragment was amplified by polymerase chain reaction (PCR) according to the homology existing in the same functional genes among Streptomyces. A mutant strain of this gene was constructed by single crossover homologous recombination. The results of sequence analysis as well as the metabolite analysis of the mutant and the original strain by liquid chromatography/mass spectroscopy indicated that this fragment was part of type II thioesterase (TE) gene, which was required for streptolydigin biosynthesis like other type II TEs function in related antibiotics biosynthesis. Furthermore, targeted gene manipulation based on PCR was a powerful tool for studying gene function and metabolomics, especially when little was known about the genomic sequence of streptomyces.  相似文献   

19.
The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P450 genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apoptolidins.  相似文献   

20.
BACKGROUND: The polyene macrolide amphotericin B is produced by Streptomyces nodosus ATCC14899. Amphotericin B is a potent antifungal antibiotic and has activity against some viruses, protozoans and prions. Treatment of systemic fungal infections with amphotericin B is complicated by its low water-solubility and side effects which include severe nephrotoxicity. Analogues with improved properties could be generated by manipulating amphotericin biosynthetic genes in S. nodosus. RESULTS: A large polyketide synthase gene cluster was cloned from total cellular DNA of S. nodosus. Nucleotide sequence analysis of 113193 bp of this region revealed six large polyketide synthase genes as well as genes for two cytochrome P450 enzymes, two ABC transporter proteins, and genes involved in biosynthesis and attachment of mycosamine. Phage KC515-mediated gene disruption was used to show that this region is involved in amphotericin production. CONCLUSIONS: The availability of these genes and the development of a method for gene disruption and replacement in S. nodosus should allow production of novel amphotericins. A panel of analogues could lead to identification of derivatives with increased solubility, improved biological activity and reduced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号