首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some nitrophenols are proposed as chromogenic reagents for the spectrophotometric determination of flucloxacillin. The reagent forms a greenish yellow 1:1 complex with flucloxacillin at pH 9.0. This complex is stable for at least 3.0 h after its formation. The greenish yellow charge transfer complex species has an absorption maximum at 446, 435, 442, 473 and 439 nm for p-nitrophenol (I), 2,4-dinitrophenol (II), 3,5-dinitrosalycilic acid (III), picramic acid (IV) and picric acid (V), respectively, with a molar absorptivity between 1.43 x 10(4) and 2.59 x 10(4) l mol(-1) cm(-1). Beer's low is valid over the concentration range 2.0-40 microg ml(-1) of flucloxacillin. The detection and quantitation limits as well as relative standard deviation were also calculated. The reagents have been successfully used for the spectrophotometric determination of flucloxacillin in pure form and in pharmaceutical preparations.  相似文献   

2.
The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 microg ml(-1) for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.  相似文献   

3.
A simple, accurate and sensitive method for the microdetermination of benzocaine, lignocaine and procaine hydrochlorides in pure forms and in pharmaceutical formulations is described. The procedure is based on the reaction of those drugs in an aqueous acidic medium with p-benzoquinone to form charge-transfer complexes. The method has been used for the determination of 5.0-70, 5.0-60 and 5.0-90 microg ml(-1) of benzocaine, lignocaine HCl and procaine HCl, respectively. The complexes have apparent molar absorptivities of 1.70 x 10(3), 2.79 x 10(3) and 2.42 x 10(3) L mol(-1) cm(-1) and Sandell sensitivities of 9.72, 10.34 and 11.25 ng cm(-2), respectively. The proposed procedure of analysis is as accurate as the British Pharmacopoeial method (2003). The method was successfully used for the determination of those drugs in the presence of their degradation products, additives and excipients, which were normally encountered in pharmaceutical formulations.  相似文献   

4.
Two rapid, simple, accurate and sensitive spectrophotometric methods were developed for the determination of glimepiride in pharmaceutical preparations. The first method was based on the formation of a charge-transfer complex of the drug, as n-electron donor, with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as π-acceptor. The second method was based on the formation of ion-pair complexes between the examined drug and bromothymol blue (BTB). The proposed methods were validated for linearity, limit of detection, limit of quantification, precision, accuracy, robustness and specificity. The calibration was linear over the concentration range of 10–80 and 20–120 μg/mL for methods I and II, respectively. The limits of detection were 2.6 and 2.8 μg/mL. The proposed methods were applied to the determination of the drug in pharmaceutical preparations. The results obtained were in good agreement with those obtained using the reference method (HPLC). There was no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively.  相似文献   

5.
Multivariate experimental design has been used to optimize 2 flow-injection spectrophotometric methods for the determination of indapamide in pharmaceutical dosage forms, both pure and commercial tablets. The methods are based on the oxidation of this drug with iron (III) in acidic medium and the subsequent formation of an intensive orange-red complex between the liberated iron (II) and 2,2'-bipyridyl or 1,10-phenanthroline reagents. Plackett-Burman designs were applied as a screening method to evaluate the most significant factors with few experiments. Central composite 2(3)+ star designs were performed to evaluate the response surfaces. The methods have been fully validated and were applied successfully to the determination of indapamide in pure and pharmaceutical forms with good accuracy and precision. Therefore, the 2 proposed procedures are simple, inexpensive, and rapid flow methods for the routine determination of indapamide in pharmaceutical preparations.  相似文献   

6.
Saleh GA 《Talanta》1998,46(1):111-121
Simple and sensitive spectrophotometric methods are described, for the first time, for the determination of sodium salts of phenobarbital (1), thiopental (2), methohexital (3) and phenytoin (4). The methods are based on the reaction of these drugs as n-electron donors with the sigma-acceptor iodine and various pi-acceptors: 7,7,8,8-tetracyanoquinodimethane; 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; 2,3,5,6-tetrachloro-1,4-benzoquinone; 2,3,5,6-tetrafluoro-1,4-benzoquinone; 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone; tetracyanoethylene and 2,4,7-trinitro-9-fluorenon. Depending on the solvent polarity, different coloured charge-transfer complexes and radicals were developed. Different variables and parameters affecting the reactions were studied and optimized. The formed complexes were examined by UV/VIS, infrared and (1)H-NMR. Due to the rapid development of colours at ambient temperature, the obtained results were used on thin layer chromatograms for the detection of the investigated compounds. Beer's plots were obeyed in a general concentration range of 1-400 mug ml(-1) for the investigated compounds with different acceptors. Interference from some co-formulated drugs was also studied. No interference was observed due to additives commonly present in the pharmaceutical preparations. The proposed methods could be applied successfully to the determination of the investigated compounds in pure and pharmaceutical dosage forms with good accuracy and precision, the recoveries ranged from 98.7+/-0.5 to 101.1+/-0.5%. The results were compared favourably with the official methods.  相似文献   

7.
Sastry CS  Rao TT  Sailaja A  Rao JV 《Talanta》1991,38(10):1107-1109
A simple, selective and sensitive spectrophotometric method has been developed for the determination of microgram quantities of warfarin sodium (WS), nicoumalone (NIC) and acebutolol hydrochloride (ACBH), either in pure form or in pharmaceutical preparations. This method is based on the haloform reaction with a known and excess of standard iodine solution under alkaline conditions. The excess of iodine is determined at pH 3.0 with metol-INH. The absorbance of the resulting p-N-methyl-benzoquinonemonoimine-INH charge-transfer complex is measured at 620 nm.  相似文献   

8.
A simple, rapid, and extractive spectrophotometric method was developed for the determination of hyoscine butylbromide (HBB) and famciclovir (FCV) in pure and pharmaceutical formulations. These methods are based on the formation of yellow ion-pair complexes between the basic nitrogen of the drug and four sulphonphthalein acid dyes, namely; bromocresol green (BCG), bromothymol blue (BTB), bromocresol purple (BCP) and bromophenol blue (BPB) in phthalate buffer of pH range (3.0-3.5). The formed complexes were extracted with chloroform and measured at 420, 412, 409 and 415nm for HBB and at 418, 412, 407 and 414nm for FCV using BCG, BTB, BCP and BPB, respectively. The analytical parameters and their effects on the reported systems are investigated. Beer's law was obeyed in the range 1.0-20mugmL(-1) with correlation coefficient (n=6)>/=0.9997. The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. The composition of the ion pairs was found 1:1 by Job's method in all cases and the conditional stability constant (K(f)) of the complexes have been calculated. The free energy changes (DeltaG) were determined for all complexes formed. The proposed methods have been applied successfully for the analysis of the studied drugs in pure and pharmaceutical formulations with percentage recoveries ranges from 99.84 to 100.26. The results were in good agreement with those obtained by the official methods.  相似文献   

9.
A simple, accurate, and sensitive spectrophotometric method for analysis of selective serotonin reuptake inhibitors (SSRIs) has been developed and validated. The analysis was based on the formation of colored charge-transfer complexes between the intact molecule of SSRI drug as an n-electron donor and each of tetracyanoquinodimethane (TCNQ) or p-chloranilic acid (pCA) as electron acceptors. The formed complexes were measured spectrophotometrically at 842 and 520 nm for TCNQ and pCA, respectively. Different variables and parameters affecting the reactions were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9975-0.9996) were found between the absorbances and the concentrations of the investigated drugs in the concentration ranges of 4-50 and 20-400 microg/mL with TCNQ and pCA, respectively. With all the investigated drugs, TCNQ gave more sensitive assays than pCA; the limits of assay detection were 2.5-4.8 and 20-40 microg/mL with TCNQ and pCA, respectively. The intra- and interassay precisions were satisfactory; the relative standard deviations did not exceed 2%. The proposed procedures were successfully applied to the analysis of the studied drugs in pure form and pharmaceutical formulations with good accuracy; the recovery values were 98.4-102.8 +/- 1.24-1.81%. The results obtained from the proposed method were statistically comparable with those obtained from the previously reported methods.  相似文献   

10.
Saleh GA  Askal HF  Radwan MF  Omar MA 《Talanta》2001,54(6):1205-1215
Three simple, rapid and sensitive spectrophotometric procedures were developed for the analysis of cephapirin sodium (1), cefazoline sodium (2), cephalexin monohydrate (3), cefadroxil monohydrate (4), cefotaxime sodium (5), cefoperazone sodium (6) and ceftazidime pentahydrate (7) in pure form as well as in their pharmaceutical formulations. The methods are based on the reaction of these drugs as n-electron donors with the σ-acceptor iodine, and the π-acceptors: 2,3-dichloro-5,6-dicyano-p-benzo-quinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). Depending on the solvent polarity, different coloured charge-transfer complexes and radicals were developed. Different variables and parameters affecting the reactions were studied and optimized. The obtained charge-transfer complexes were measured at 364 nm for iodine (in 1,2-dichloroethane), 460 nm for DDQ (in methanol) and 843 nm for TCNQ (in acetonitrile). Ultraviolet–visible, infrared and 1H-nuclear magnetic resonance techniques were used to study the formed complexes. Due to the rapid development of colours at ambient temperature, the obtained results were used on thin-layer chromatograms for the detection of the investigated drugs. Beer's plots were obeyed in a general concentration range of 6–50, 40–300 and 4–24 μg ml−1 with iodine, DDQ and TCNQ, respectively, with correlation coefficients not less than 0.9989. The proposed procedures could be applied successfully to the determination of the investigated drugs in vials, capsules, tablets and suspensions with good recovery; percent ranged from 96.47 (±1.14) to 98.72 (±1.02) in the iodine method, 96.35 (±1.62) to 98.51 (±1.30) in the DDQ method, and 95.98 (±0.78) to 98.40 (±0.87) in the TCNQ method. The association constants and standard free energy changes using Benesi–Hildebrand plots were studied. The binding of cephalosporins to proteins in relation to their molar absorptivities was studied.  相似文献   

11.
The present paper describes an effective and low-cost spectrophotometric method for the determination of mefenamic acid in its pure form and pharmaceutical preparations. The method is based on the charge-transfer complexation between mefenamic acid as an n-electron donor and chloranil as a π-acceptor to form a violet chromogen measured at 540 nm. Under the optimum conditions, a linear relationship with a good correlation coefficient (0.9996) was found between the absorbance and concentration of the studied drug in the range of 10–60 μg/mL. The optimal reaction conditions such as reagent concentration, heating time, and stability of the reaction product were determined. The limit of detection (LOD) was 2.16 μg/mL and the limit of quantifycation (LOQ) was 7.15 μg/mL. The method was successfully applied to the determination of mefenamic acid in pharmaceutical preparations without any interference from common excipients. The text was submitted by the author in English.  相似文献   

12.
A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H(2)-receptor antagonists: cimetidine, famotidine, nizatidine and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium(IV) in presence of perchloric acid and subsequent measurement of the excess Ce(IV) by its reaction with p-dimethylaminobenzaldehyde to give a red colored product (lambda(max) at 464nm). The decrease in the absorption intensity of the colored product (DeltaA), due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9990-0.9994) were found between DeltaA values and the concentrations of the drugs in a concentration range of 1-20microgml(-1). The assay limits of detection and quantitation were 0.18-0.60 and 0.54-1.53microgml(-1), respectively. The method was validated, in terms of accuracy, precision, ruggedness and robustness; the results were satisfactory. The proposed method was successfully applied to the determination of the investigated drugs in pure and pharmaceutical dosage forms (recovery was 98.3-102.6+/-0.57-1.90%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.  相似文献   

13.
A simple and sensitive fluorometric method for determination of ketorolac tromethamine was studied. The method depends on oxidation of the drug with cerium(IV) and subsequent monitoring of the fluorescence of the induced cerium(III) at lambda(em) 365 nm after excitation at 255 nm. Different variables affecting the reaction conditions, such as the concentrations of cerium(IV), sulfuric acid concentration, reaction time, and temperature, were carefully studied and optimized. Under the optimum conditions, a linear relationship was found between the relative fluorescence intensity and the concentration of the investigated drug in the range of 0.1-0.8 microg/mL. No interferences could be observed from the excipients commonly present in dosage forms. The proposed method was successfully applied to the analysis of the investigated drug in its pure form, pharmaceutical preparations, and biological fluids with good accuracy and precision. The recoveries for pharmaceutical formulations ranged from 99.8-101.0 +/- 0.6% for tablets, 98.5-101.0 +/- 1.0% for ampoules, and 99.0-100.5 +/- 0.7% for eye drops. The results obtained by the proposed method were satisfactory compared with those obtained by the official method. The recoveries for biological fluids were 99.1-100.4 +/- 0.7 and 99.0-100.0 +/- 0.5% for plasma and urine, respectively.  相似文献   

14.
Based on the chemiluminescence (CL) emission generated from the oxidation of ceftriaxone sodium alkali hydrolysate by potassium permanganate in polyphosphoric acid (PPA), a novel determination method for ceftriaxone sodium was developed by using a flow-injection technique. The calibration curve appears to be linear in the range between 0.05 and 100 microg mL(-1) with a detection limit (3sigma) of 25 ng mL(-1), and a relative standard deviation (RSD) of 0.6% for eleven replicate determinations of 5.0 microg mL(-1) ceftriaxone sodium. The proposed method has been successfully utilized for the determination of ceftriaxone sodium in pharmaceutical formulations, while the chemiluminescence reaction mechanisms were investigated.  相似文献   

15.
A method for the determination of Se in pharmaceutical samples (nutritional supplements and shampoos) is proposed. The method involves two steps: (1) digestion of the samples and reduction of all forms of Se to Se(IV), which is complete in only 10 min by the use of a focused microwave digestor; and (2) continuous derivatisation (hydride formation) and spectrometry detection by atomic fluorescence. The method can be applied over a wide range of concentrations (0.3-1300 ng ml(-1) of Se) with good repeatability (RSD values lower than 4.6%). The method has been applied successfully to a reference material, and two different types of pharmaceuticals (namely, five different nutritional supplements-with Se present as sodium selenite and Se-methionine-and two shampoos, with selenium sulphide), in agreements with the certified and nominal values, respectively. Yields ranged between 86.5 and 104.8%, and good precision (RSD values lower than 4.2%) were obtained in all instances.  相似文献   

16.
This paper describes the development of a generic spontaneous nonextractive spectrophotometric method for determination of 13 pharmaceutically important 4-quinolone antibiotics. The method was based on the formation of yellow-colored water-soluble ion-pair complexes between 2% (w/v) beta-naphthol reagent and each of the studied drugs in sulfuric acid medium at room temperature. The formed ion-pair chromogens have maximum absorption peaks in the range of 365-391 nm. The concentrations of the reagents and the experimental conditions affecting the reaction were optimized. Under the optimum conditions, linear relationships with good linear coefficients (0.9987-0.9995) were found between the absorbance and concentration of the investigated drugs in the range of 10-350 microg/mL. The assay limits of detection and quantitation were 1-9.9 and 3.4-32.9 microg/mL, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the analysis of the investigated drugs in pure and pharmaceutical dosage forms with good accuracy and precision; the percentages of label claim ranged from 97.8-102.8 +/- 0.35-1.60%. The results obtained by the proposed spectrophotometric method were comparable with those obtained by the official or reported methods. The proposed method is superior to all the previously reported ion-pair formation-based methods in terms of simplicity because it did not involve extraction procedures for the ion-pair complex. Therefore, this method might be recommended for routine use in quality control laboratories for analysis of the investigated 4-quinolone antibiotics in their pure forms, as well as in pharmaceutical dosage forms.  相似文献   

17.
A simple, rapid and accurate spectrophotometric method for the determination of antibiotic drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure form and different pharmaceutical preparations has been developed. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) as pi-acceptors to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions for these CT reactions have been studied carefully. Beer's law is obeyed over the concentration ranges of 4-180 microg mL(-1) and 4-70 microg mL(-1) for Fluclox and Diclox drugs using TCNQ and TCNE reagents, respectively. The Sandell sensitivities (S) are found to be 0.016-0.035 microg cm(-2) and 0.011-0.016 microg cm(-2) for Fluclox and Diclox, respectively, which indicate the high sensitivity of the proposed method. The relative standard deviations (R.S.D.: 0.08-0.49 and 0.15-0.80) for the determination of Fluclox and (R.S.D.: 0.05-0.75 and 0.13-0.75) for Diclox were obtained for four to six replicates using TCNQ and TCNE reagents, respectively, refer to the high accuracy and precision of the proposed method. These results are also confirmed by the between-day precision and the percent recovery of 99.90-100.1 and 99.60-100.4 for Fluclox and 99.90-100.5 and 99.40-100.1 for Diclox using TNCQ and TCNE reagents, respectively. The results obtained for the two reagents are comparable with those obtained by the official method.  相似文献   

18.
A simple, rapid, accurate, precise and sensitive colorimetric method for the determination of finasteride in tablets is described. The proposed methods are based on the formation of ion-pair complexes between the examined drug with bromophenol blue (BPB), bromocresol green (BCG) and bromothymol blue (BTB), which can be measured at the optimum lambda(max). Beer's law is obeyed in the concentration ranges 3.0-15.0, 3.0-15.0 and 5.0-20 microg/mL with BPB, BCG and BTB, respectively. The detection limits of FIN was found to be 1.16 microg/mL for BPB, 1.17 for BCG, 1.76 microg/mL for BTB. All the methods gave similar results and were validated for selectivity, linearity, precision and sensitivity. The proposed methods were directly and easily applied to the pharmaceutical preparation with accuracy, resulting from recovery experiments between 100.11 and 100.33% for BPB, 100.17 and 100.67% for BCG and 100.33 and 100.60% for BTB methods. The low relative standard deviation values indicate good precision and high recovery values indicate accuracy of the proposed methods. The proposed methods have been applied to the determination of drug in commercial tablets. Results obtained from the analysis of commercial preparations with the proposed methods are in good agreement with those obtained with the official HPLC method.  相似文献   

19.
A reflectance near-infrared (RNIR) spectroscopy method was developed for simultaneous determination of chondroitin (CH), glucosamine (GO), and ascorbic acid (AS) in capsule powder. A simple preparation of the sample was done by grinding, sieving, and compression of the powder sample for improving RNIR spectra. Partial least squares (PLS-1 and PLS-2) was successfully applied to quantify the three components in the studied mixture using information included in RNIR spectra in the 4240-9780 cm(-1) range. The calibration model was developed with the three drug concentrations ranging from 50 to 150% of the labeled amount. The calibration models using pure standards were evaluated by internal validation, cross-validation, and external validation using synthetic and pharmaceutical preparations. The proposed method was applied for analysis of two pharmaceutical products. Both pharmaceutical products had the same active principle and similar excipients, but with different nominal concentration values. The results of the proposed method were compared with the results of a pharmacopoeial method for the same pharmaceutical products. No significant differences between the results were found. The standard error of prediction was 0.004 for CH, 0.003 for GO, and 0.005 for AS. The correlation coefficient was 0.9998 for CH, 0.9999 for GO, and 0.9997 for AS. The highly accurate and precise RNIR method can be used for QC of pharmaceutical products.  相似文献   

20.
The present study describes two simple, rapid, selective and cost-effective spectrophotometric methods for the determination of dothiepin hydrochloride (DOTH), an antidepressant drug, in bulk drug and pharmaceutical formulations. The first method (method A) is based on the formation of yellow colored ion-pair complex between DOTH and alizarin red S (ARS) in acid medium which was extracted into dichloromethane and the absorbance was measured at 445 nm. The second method (method B) is based on the breaking of the yellow DOTH–ARS ion-pair complex in alkaline medium followed by the measurement of the violet color free dye at 570 nm. Under the optimized conditions, Beer’s law is obeyed over the concentration ranges of 2.50–55.0 and 1.00–35.0 μg ml−1 DOTH for method A and method B, respectively. The molar absorptivity, Sandell’s sensitivity, detection and quantification limits are also calculated. The methods were validated for intra-day and inter-day accuracy and precision; selectivity and robustness and ruggedness. The proposed methods were applied successfully to the determination of DOTH in pure drug and commercial formulations. The accuracy and reliability of the proposed methods were further established by parallel determination by the official method and also by recovery studies via standard addition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号