首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic and inelastic neutron scattering experiments have been performed on the dimer spin system NH4CuCl3, which shows plateaus in the magnetization curve at m=1/4 and m=3/4 of the saturation value. Two structural phase transitions at T1 approximately 156 K and at T(2)=70 K lead to a doubling of the crystallographic unit cell along the b direction and as a consequence a segregation into different dimer subsystems. Long-range magnetic ordering is reported below T(N)=1.3 K. The magnetic field dependence of the excitation spectrum identifies successive quantum phase transitions of the dimer subsystems as the driving mechanism for the unconventional magnetization process in agreement with a recent theoretical model.  相似文献   

2.
The properties of S = 1 anisotropic Heisenberg models with nondiagonal exchange between axial and planar spin components are investigated using Monte Carlo techniques. The quantum nature is taken into account in a semi-classical approximation. The ordering of the spins when applying an external field with axial and planar components is discussed. It is argued that the quantum nature of the spins and the nondiagonal exchange may explain the peculiar shape of the magnetic specific heat of FeBr2 as well as the weakly first-order phase transition observed in the same compound when a tilted field is applied. Received 24 January 1999  相似文献   

3.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2Fe2Ge4O13 are studied using bulk methods, neutron diffraction, and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.  相似文献   

4.
In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behavior close these quantum critical points can be tied to known models of quantum magnetism. Received: 13 March 1998 / Received in final form and Accepted: 21 July 1998  相似文献   

5.
Novel massive quantum states appearing in spin chains under a strong magnetic field are discussed. These states lead to plateaus in magnetization curves. When the systems are axially symmetric and the field is applied parallel to the symmetry-axis, the phenomena are analogous to metal-insulator transitions. Striking features of the plateau phenomena - exactness and rationality - are explained as consequences the commensurability condition to the underlying lattice. The effects of the planar anisotropy are also discussed in detail. Received: 16 February 1998 / Revised: 20 April 1998 / Accepted: 30 April 1998  相似文献   

6.
We analyse the competition between spin glass (SG) order and local pairing superconductivity (SC) in the fermionic Ising spin glass with frustrated fermionic spin interaction and nonrandom attractive interaction. The phase diagram is presented for all temperatures T and chemical potentials μ. SC-SG transitions are derived for the relevant ratios between attractive and frustrated-magnetic interaction. Characteristic features of pairbreaking caused by random magnetic interaction and/or by spin glass proximity are found. The existence of low-energy excitations, arising from replica permutation symmetry breaking (RPSB) in the Quantum Parisi Phase, is shown to be relevant for the SC-SG phase boundary. Complete 1-step RPSB-calculations for the SG-phase are presented together with a few results for -step breaking. Suppression of reentrant SG-SC-SG transitions due to RPSB is found and discussed in context of ferromagnet-SG boundaries. The relative positioning of the SC and SG phases presents a theoretical landmark for comparison with experiments in heavy fermion systems and high superconductors. We find a crossover line traversing the SG-phase with as its quantum critical (end)point in complete RPSB, and scaling is proposed for its vicinity. We argue that this line indicates a random field instability and suggest Dotsenko-Mézard vector replica symmetry breaking to occur at low temperatures beyond. Received 26 November 1998 and Received in final form 25 January 1999  相似文献   

7.
The spectra of a two-electron quantum dot in a magnetic field of arbitrary strength is obtained by using the shifted 1/Nexpansion method. The level ordering as well as the transitions in the angular momenta of the quantum dot are studied. The dependence of the electron absorption spectra on the applied magnetic field is also calculated. Comparisons show that our results are in good agreement with the exact ones.  相似文献   

8.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

9.
Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large. We show that the classical minimum energy spin configuration is an umbrella when an external magnetic field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength modulation limit. Received: 9 September 1997 / Revised: 15 October 1997 / Accepted: 17 November 1997  相似文献   

10.
Complex studies of the magnetic, magnetoelectric, and magnetoelastic properties of GdMn2O5 single crystals in strong pulsed magnetic fields are carried out in order to obtain additional indirect information on the character of the rare-earth and manganese spin ordering. It is shown that magnetic ordering of Gd3+ spins affects the manganese sublattice spin orientation and initiates new magnetic phase transitions. The observed magnetoelectric properties of the GdMn2O5 system are interpreted in terms of the theory of phase transitions.  相似文献   

11.
Chiral order of the Josephson-junction ladder with half a flux quantum per plaquette is studied by means of the exact diagonalization method. We consider an extreme quantum limit where each superconductor grain (order parameter) is represented by S=1/2 spin. So far, the semi-classical case, where each spin reduces to a plane rotator, has been considered extensively. We found that in the case of S=1/2, owing to the strong quantum fluctuations, the chiral (vortex lattice) order becomes dissolved except in a region, where attractive intrachain and, to our surprise, repulsive interchain interactions both exist. On the contrary, for considerably wide range of parameters, the superconductor (XY) order is kept critical. The present results are regarded as a demonstration of the critical phase accompanying chiral-symmetry breaking predicted for frustrated XXZ chain field-theoretically. Received 20 February 2000  相似文献   

12.
The specific features of the “incommensurate-commensurate” phase transitions induced by a magnetic field in multiferroics (materials with coexisting magnetic and electric ordering) are considered. These materials are ferroelectromagnets, for example, bismuth ferrite BiFeO3 and BiFeO3-based compounds, which have spatially modulated spin structures. It is shown that the interaction between the electric and magnetic subsystems of the multiferroic material can lead to an electric-field-induced shift of the critical magnetic field corresponding to the transition from a spatially modulated state to a homogeneous antiferromagnetic state. According to the theoretical estimates obtained for material parameters characteristic of the bismuth ferrite, this shift is of the order of 0.5 T in an electric field of 50 kV/cm. The phase diagrams are constructed in the “electric field-magnetic field” coordinates. The results of calculations performed in the harmonic incommensurate structure approximation are compared with the exact soliton solution.  相似文献   

13.
We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field applied to the QD.  相似文献   

14.
We argue that aspects of the anomalous, low temperature, spin and charge dynamics of the high temperature superconductors can be understood by studying the corresponding physics of undoped Mott insulators. Such insulators display a quantum transition from a magnetically ordered Néel state to a confining paramagnet with a spin gap; the latter state has bond-centered charge order, a low energy S=1 spin exciton, confinement of S=1/2 spinons, and a free S=1/2 moment near non-magnetic impurities. We discuss how these characteristics, and the quantum phase transitions, evolve upon doping the insulator into a d-wave superconductor. This theoretical framework was used to make a number of predictions for STM measurements and for the phase diagram of the doped Mott insulator in an applied magnetic field.  相似文献   

15.
We present a field-theoretic renormalization group calculation in two loop order for classical O(N)-models with an inverse square interaction in the vicinity of their lower critical dimensionality one. The magnetic susceptibility at low temperatures is shown to diverge like with a=(N-2)/(N-1) and . From a comparison with the exactly solvable Haldane-Shastry model we find that the same temperature dependence applies also to ferromagnetic quantum spin chains. Received: 20 February 1998 / Revised: 27 April 1998 / Accepted: 30 April 1998  相似文献   

16.
强磁场下的固体物理研究进展   总被引:2,自引:0,他引:2  
曹效文 《物理》2002,31(11):696-701
强磁场下的物理研究是一个富有成果的研究领域,40T以下稳态强磁场的研制成功为固体物理研究提供了新的科学机遇。文章简要地介绍强磁场下某些固体物理,其中包括高温超导体的H-T相图和非费米液体行为,德哈斯(de Haas)效应和费米面性质,电子的Wigner结晶及其动力学行为,磁场诱导的相变(如绝缘体-金属和超导转变),多级磁有序,串级自旋密度波和大块材料中的量子霍尔效应等的实验研究的近期进展,希望以此引起人们对国内强磁场下物理研究的关注。  相似文献   

17.
A series of manganites Tb1−x Ho x MnO3 (0≤x≤0.6) with orthorhombic structure are synthesized and detailed investigations on their multiferroicity are performed. Successive magnetic transitions upon temperature variation are evidenced for all the samples, and both the Mn3+spiral spin ordering and rare-earth spin ordering are suppressed with increasing x. A significant enhancement of both the polarization and magnetoelectric response within 0.2<x<0.4 is observed, which may probably result from the shortening of the spiral-spin-ordering period, due to the competition between the spiral spin order and E-type antiferromagnetic order. This argument is supported by further theoretical calculations based on the two e g -orbital double-exchange model.  相似文献   

18.
In this work, we address a challenging problem of a competition of charge and spin orders for high-T c cuprates within a simplified 2D spin-pseudospin model which takes into account both conventional Heisenberg Cu2+?Cu2+ antiferromagnetic spin exchange coupling (J) and the on-site (U) and intersite (V) charge correlations in the CuO2 planes with the on-site Hilbert space reduced to only three effective charge states (nominally Cu1+;2+;3+). We performed classical Monte Carlo calculations for large square lattices implying the mobile doped charges and focusing on a case of a small intersite repulsion V ? J. The on-site attraction (U < 0) does suppress the antiferromagnetic ordering and gives rise to a checkerboard charge order with the doped charge distributed randomly over a system in the whole temperature range. However, under the on-site repulsion (U > 0) the homogeneous ground state antiferromagnetic solutions of the doped system found in a mean-field approximation are shown to be unstable with respect to a phase separation with the charge and spin subsystems behaving like immiscible quantum liquids. Puzzlingly, with lowering the temperature one can observe two sequential phase transitions: first, an antiferromagnetic ordering in the spin subsystem diluted by randomly distributed charges, then, a charge condensation in the charge droplets. The effects are illustrated by the Monte Carlo calculations of the specific heat and longitudinal magnetic susceptibility.  相似文献   

19.
《Physics letters. A》2020,384(2):126062
A scaling theory of the Kondo lattices with frustrated exchange interactions is developed, criterium of antiferromagnetic ordering being investigated. Depending on the bare model parameters, one or two quantum phase transitions into non-magnetic spin-liquid and Kondo Fermi-liquid ground states can occur with increasing the bare coupling constant. Whereas the renormalization of the magnetic moment in the ordered phase can reach orders of magnitude, spin fluctuation frequency and coupling constant are moderately renormalized in the spin-liquid phase. This justifies application of the scaling approach.  相似文献   

20.
We study the magnetic relaxation of a system of localized spins interacting through weak dipole interactions, at a temperature large with respect to the ordering temperature but low with respect to the crystal field level splitting. The relaxation results from quantum spin tunneling but is only allowed on sites where the dipole field is very small. At low times, the magnetization decrease is proportional to as predicted by Prokofiev and Stamp, and at long times the relaxation can be described as an extension of a relaxed zone. The results can be directly compared with very recent experimental data on Fe8 molecular clusters. Received 9 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号