首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The current work focuses on the development and application of fast-responding polymer/ceramic pressure-sensitive paint (PSP) as an advanced surface pressure measurement technique for unsteady flow fields in large-scale wind tunnels. To demonstrate the unsteady PSP technique, the unsteady surface pressure distribution over a hemispherical dome placed in the United States Air Force Research Laboratory’s Trisonic Gasdynamics Facility (TGF) was studied by phase-locking to the characteristic frequency in the flow caused by an unsteady separated shear layer shed from the dome. The wind tunnel was operated at stagnation pressures of 23.92 and 71.84 kPa, with the test section flow at Mach 0.6. Under the two operating conditions, the predominant shear layer frequency was measured to be 272 and 400 Hz, respectively. The quasi-periodic shear layer frequency enabled a phase-averaged method to be employed for capturing the unsteady shock motion on the hemisphere. Unsteady pressure data resulting from this technique are shown to correlate well with measurements acquired by conventional measurement techniques. Measurement uncertainty in the phase-averaging technique will be discussed. To address measurement uncertainties from temperature sensitivity and model movement, a new implementation of an AC-coupled data representation is offered.  相似文献   

2.
 This paper provides an example of the application of Pressure Sensitive Paint (PSP) to complex internal suspersonic flows and demonstrates the relationship between ejector wall pressure and aerodynamic performance. Details of such jet mixer-ejector nozzles are relevant to jet noise reduction programs. Several ejector configurations with straight, convergent, and divergent side walls were used in our experiments. The side-wall that was painted with PSP was also instrumented with an array of 156 pressure taps connected to Electronically Scanned Pressure (ESP) modules, enabling simultaneous measurement of “true” reference pressures. The PSP results agreed very well with the “true” reference pressures and also provided a detailed map of the complicated pressure patterns that could not be detected using the pressure taps. Finally, we also demonstrated the direct relationship between ejector side-wall pressure distribution and ejector performance characteristics such as exit mean flow uniformity, pumping, and thrust augmentation. Received: 16 December 1997/Accepted: 21 August 1998  相似文献   

3.
 Surface pressures were measured in the short-duration, transient flow environment of a small-scale, low pressure-ratio shock tube using thin-film pressure-sensitive paint (PSP). Issues regarding coating formulation, measurement uncertainty, optical system design, and temperature and illumination compensation are discussed. The pressure measurements were acquired during steady flow conditions following the passage of normal shocks and expansion regions along a flat sidewall and a wedge sidewall. The PSP characteristic response time was 3 to 6 ms. Overall pressure uncertainty for the shock tube measurements ranged up to 5% over one atmosphere and compared well with theoretical estimates of uncertainty. Received: 20 April 1998 / Accepted: 9 September 1998  相似文献   

4.
高层双塔楼绕流风场效应的数值预测   总被引:1,自引:0,他引:1  
王辉  陈水福 《力学与实践》2006,28(6):19-22,18
在一高层双塔楼静力风载风洞试验的基础上,采用时均数值模拟的方法,对其绕流风场进行了模拟,获得了风场的绕流特点和塔楼表面风压的分布规律.通过风压的模拟计算值与试验值的比较,表明以数值方法预测气动干扰强烈的绕流风场是准确和可行的.  相似文献   

5.
The flow field associated with a jet impinging onto a surface at an inclined angle is investigated using pressure-sensitive paint (PSP) and particle image velocimetry. The PSP yields continuous measurements of pressure on the jet impingement surface. The jet footprint on the impingement surface is visualized using the half-maximum pressure contour. The results indicate that the impingement angle of the jet is the dominant parameter in determining the footprint of the jet on the impingement surface. This contour is similar in shape to an ellipse that is created by projecting the nozzle through the impingement surface. The ellipse is centered at the location of maximum pressure and the width of the minor axis is just over one jet diameter. The location of maximum pressure is found upstream of the geometric impingement point and this location is a strong function of the impingement angle. A curve fit for the location of maximum pressure can be constructed using an exact solution of the Navier–Stokes equations for a non-orthogonal stagnation flow. The maximum value of pressure is a function of impingement angle and varies as the sine of the impingement angle squared; the maximum pressure is also a function of jet impingement distance. Using these results, a simple procedure for predicting the overall structure of the jet on the impingement surface is presented.  相似文献   

6.
Surface pressure field mapping using luminescent coatings   总被引:1,自引:0,他引:1  
In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.  相似文献   

7.
The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.  相似文献   

8.
The paper reports the results of experimental measurements of the reflection pressures close to spherical charges of TNT. These measurements were made using a pressure bar technique. Charge weights of up to 3.6 kg were used, with the reflecting plane in the range 25 to 300 mm from the charge surface.A possible wave interaction model is discussed, to account for the observed pressure profiles, and its qualitative correctness checked by means of numerical simulation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

9.
Pressure-sensitive paint (PSP) is a relatively new aerodynamic measurement tool with the unique capability of providing a field measurement of pressure over a test surface. An introductory review of this technology is presented, which is confined to the application of the PSP method to aircraft development wind tunnel testing. This is at present the primary application area and thus the focus of research on the use of the method, and is the authors' own area of research. Described are PSP fundamentals, the various elements comprising PSP technology, and current limitations and considerations in applying this technology. Experimental results are presented to illustrate the present capability of the method. The few publications currently available on this subject in the open literature are also referenced.  相似文献   

10.
PIV measurements in the bottom boundary layer of the coastal ocean   总被引:1,自引:0,他引:1  
Turbulence measurements were recently performed in the bottom boundary layer of the coastal ocean using a submersible PIV system. The system consisted of two 2 KǶ K digital cameras, operating simultaneously. Optical fibers were used to transmit light from a surface mounted pulsed dye laser to the sample areas. The system was mounted on a seabed platform that allowed the sample areas to be aligned to the current, and measurements to be made up to 10 m above the bed. Sample profiles and time series of mean velocity as well as structure functions are presented. A method to calculate the Reynolds shear stress that is not contaminated by surface wave motion and instrument misalignment is also described.  相似文献   

11.
The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using computational fluid dynamics. A Reynolds-averaged Navier–Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. An original approach was employed by using two successive simulations: the first one on a large domain to model the blockage due to the wind tunnel walls and the sails model, and a second one on a smaller domain to model the flow around the sails model. A verification and validation of the computed aerodynamic forces and pressure distributions was performed. The computed pressure distribution is shown to agree well with the measured pressures. The sail surface pressure was correlated with the increase of turbulent viscosity in the laminar separation bubble, the flow reattachment and the trailing edge separation. The drive force distribution on both sails showed that the fore part of the genoa (fore sail) provides the majority of the drive force and that the effect of the aft sail is mostly to produce an upwash effect on the genoa. An aerodynamic model based on potential flow theory and a viscous correction is proposed. This model, with one free parameter to be determined, is shown to fit the results better than the usual form drag and induced drag only, even if no friction drag is explicitly considered.  相似文献   

12.
 While pressure-sensitive paint (PSP) is evolving into a viable alternative to conventional pressure taps for surface pressure measurements, the inherent temperature-sensitivity of the coating’s fluorescence intensity is a prominent drawback. Unless the PSP is applied to a temporally and spatially isothermal surface, this inherent temperature-sensitivity effect severely limits the accuracy of the two-dimensional pressure distribution obtained from the coating. In this study, the pressure- and temperature-sensitivity effects of three commonly used PSPs and two temperature-sensitive paints (TSPs) are evaluated over pressure and temperature ranges found in many compressible flow experiments. In addition, four PSP data reduction methods are compared by applying PSP to a transverse jet-in-crossflow experiment. Each data reduction method encompasses a different degree of temperature correction. Conventional pressure tap measurements are used to evaluate the accuracy of each method. Received: 27 January 1997/Accepted: 15 July 1997  相似文献   

13.
将气动载荷分配到有限元节点上是工程实际中的一项重要而繁琐的工作.对于二维的翼面气动载荷,根据原始的气动压力点的压力值,采用样条曲面拟合的方法,拟合得到翼面压力分布曲面,由该曲面得到有限元节点上的压力值,再在有限元模型单元上积分得到有限元节点载荷供强度设计使用.大型飞机具有复杂的增升装置,增升装置的气动载荷可能是三维的,对于三维的翼面载荷,直接在气动网格上积分得到气动载荷的小块集中力,然后按照沿某一方向投影的方法,找到该集中力作用的单元,最后按照二次规划的方法,将其分配到有限元节点上.  相似文献   

14.
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c?=?1) but with significantly different intensities (Ti?=?7.2?% and 12.3?%) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.  相似文献   

15.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

16.
Not only can mean pressures on a surface over which a fluid flows be accurately measured using a plastic tube which connects the surface tapping points to a remote pressure transducer, but the fluctuating pressures can also, provided that the transfer function, which relates the fluctuating pressures at the opposite ends of the tubing, is known. This technique was used here to measure the mean and fluctuating pressures on the surface of a circular cylinder subject to a cross-flowing airstream in the Reynolds number range from 6.8 × 104 to 9.6 × 104 based on cylinder diameter. Good agreement with published results gave confidence in the technique. Received: 15 April 1998/Accepted: 19 January 2000  相似文献   

17.
This paper investigates strain measured on the inside of an agricultural tyre with large tread-blocks during a series of static tests using a novel measuring system. The full field strain measurements may be used in the development of a tyre which is capable of estimating tyre forces from strain measurements. The strain measurement system makes use of a calibrated stereo camera system on a mechanical stabilizing system that keeps the cameras pointed at the inside surface of the tyre in contact with the road while the wheel rotates. A static tyre test rig is used to displace the road surface relative to the tyre in the vertical and longitudinal direction. The large tread-blocks caused strain concentrations on the inner surface as the tyre deforms to comply with the road surface. Vertical and longitudinal tests each produce unique strain patterns in the contact patch region. Relationships between the applied forces and strain measurements were developed and showed that these relationships are near linear with R2 values above 0.97. The strain measurements also show that the location where strain gauges, for single point strain measurements, are placed inside the tyre is very important on large lugged tyres.  相似文献   

18.
气浮动压轴承的静特性数值计算与实验研究   总被引:2,自引:0,他引:2  
为了实现对气浮动压轴承的静特性能进行研究,文中提出并设计了一种圆锥型气浮动压轴承.在数学模型建立的基础上对其求解域进行了保角变换和斜坐标变换,运用局部积分有限差分对控制方程在斜坐标系下的差分式进行了推导,利用VB对控制方程的静特性进行了数值计算求解.结果表明:螺旋槽能很好实现气浮轴承动压效应,轴承的转速N对其动压效应影响比较大,转速N越高其动压效应越明显;轴承的螺旋角和槽深比对轴承的静特性的影响存在一个最佳参数,轴承的槽数和槽宽比增加到一定值后继续增大对轴承的承载力的影响不明显.实验结果与数值计算结果进行了比较,两者基本一致,为气浮动压轴承的研究与发展提供了一种新结构和新思路.  相似文献   

19.
The principle of pressure-sensitive paints (PSPs) is based upon excitation of the luminophore molecules at a certain wavelength and the emission of this absorbed energy at a higher wavelength. By isolating these two wavelengths we insure that the results obtained are not affected by any background radiation. Various international research groups, such as: the Central Aero-Hydrodynamic Institute (Russia), the University of Washington, NASA Ames, Boeing and McDonnell Douglas (USA), have developed their PSP formulations and some are commercially available.Two paints, which have been developed in-house at the Aero-Physics Laboratory (APL) at the University of Manchester, are studied here. One formulation uses hydrochloric acid (PSP1–HCl) and the other acetone as the solvent (PSP2–Ace). The current study employs the well known schlieren photography technique together with the relatively new PSP method, with comparison to discrete measurements, to examine the flow through a two-dimensional air-ejector system and examines the efficacy of the PSP formulations in providing an accurate global pressure field of the aforementioned setup. Detailed analysis of the errors and drawbacks involved in PSP measurements along with possible solutions to overcome them are also presented. Fully expanded jet Mach numbers in the range of 0.52 ? Mj ? 1.36 were examined.  相似文献   

20.
A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ? scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号