首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two dimensional Yang-Mills theory (YM2) is analyzed in both the continuum and the lattice. In the complete axial gauge the continuum theory may be defined in terms of a Lie algebra valued white noise, and parallel translation may be defined by stochastic differential equations. This machinery is used to compute the expectations of gauge invariant functions of the parallel translation operators along a collection of curvesC. The expectation values are expressed as finite dimensional integrals with densities that are products of the heat kernel on the structure group. The time parameters of the heat kernels are determined by the areas enclosed by the collectionC, and the arguments are determined by the crossing topologies of the curves inC. The expectations for the Wilson lattice models have a similar structure, and from this it follows that in the limit of small lattice spacing the lattice expectations converge to the continuum expectations. It is also shown that the lasso variables advocated by L. Gross [36] exist and are sufficient to generate all the measurable functions on the YM2-measure space.  相似文献   

2.
A model with random 1-, 2-, and 3-point potentials is used to study the elementary excitations in substitutionally disordered crystals. The equations of motion for the 1- and 2-point Green's functionsG(1),G(12) are derived and averaged over the ensemble of random configurations. An extension of the coherent potential method is proposed, which leads to a self-consistent set of equations for the averaged 1- and 2-point Green's functions, including corresponding conditional averages. The theory takes into account that randomness effects the anharmonic interactions both via the explicit configuration dependence of the cubic vertices and via the implicit dependence through the Green's functions. The final equations take a similar form as in the usual CPA if the harmonic potential of the pure system and the harmonic single-site impurity potential are replaced by corresponding functionals of averaged and conditionally averaged 1- and 2-point functions, and the definition of the single-site mass-operator is appropriately generalized.Work supported by the Deutsche ForschungsgemeinschaftExtract from thesis, D 26  相似文献   

3.
A formulation of massless QED is studied with a non-singular Lagrangian and conformal invariant equations of motion. It makes use of non-decomposable representations of the conformal groupG and involves two dimensionless scalar fields (in addition to the conventional charged field and electromagnetic potential) but gauge invariant Green functions are shown to coincide with those of standard (massless) QED. Assuming that the (non-elementary) representation ofG for the 5-potential which leaves the equations of motion invariant and leads to the free photon propagator of Johnson-Baker-Adler (JBA) conformal QED remains unaltered by renormalization, we prove that consistency requirements for conformal invariant 2-, 3-, and 4-point Green functions satisfying (renormalized) equations of motion and standard Ward identities lead to either a trivial solution (withe=0) or to a subcanonical dimensiond=1/2 for the charged field.To the memory of Kurt Symanzik  相似文献   

4.
O. Oron  L. P. Horwitz   《Physics letters. A》2001,280(5-6):265-270
We show that the problem of radiation reaction may be formulated in a space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0,1,2,3 components correspond to the Maxwell fields). The particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five-dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous nonlinear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that the mass-shell deviation is bounded when the external field is removed.  相似文献   

5.
The functional approach developed earlier for scattering theory in quantum field theory makes it possible to make an explicit and complete study of the gauge invariance properties oftransition amplitudes (not just of the gauge transformations of Green's functions) in covariant and noncovariant gauges. This paper is devoted to the Abelian gauge theory of quantum electrodynamics. Using the powerful technique of functional differentiation and starting from the Coulomb gauge, the gauge invariance property of transition amplitudes,up to gauge-dependent scaling factors, isexplicitly established in arbitrary gauges. The key ingredients in the analysis are the derived exact expression for the vacuum-to-vacuum transition amplitude, introducing in the process arbitrary gauges, and the idea of stimulated emissions by external sources studied earlier.  相似文献   

6.
张盈  王青 《中国物理快报》2008,25(4):1227-1230
Gauge covariance for Green's functions of a gauge theory through a fermion propagator in the presence of arbitrary external gauge field is proven and a formalism of gauge and Lorentz covariant Schwinger-Dyson equation for the fermion propagator with external gauge field is built up within ladder approximation.  相似文献   

7.
The effective dynamics of quarks is described by a nonperturbatively regularized NJL model equation with canonical quantization and probability interpretation. The quantum theory of this model is formulated in functional space and the gluons are considered as relativistic bound states of colored quark-antiquark pairs. Their wave functions are calculated as eigenstates of hardcore equations, and their effective dynamics is derived by weak mapping in functional space. This leads to the phenomenological SU(3) gauge invariant gluon equations in functional formulation, i.e., the local gauge symmetry is a dynamical effect resulting from the dynamics of the quark model.  相似文献   

8.
Heisenberg type equations of motion are established in a nonabelian gauge theory with minimal and nonminimal couplings and various relativistic particle equations of motion are derived from them. These equations for pointlike particles possessing a nonabelian gauge interaction (chosen for definiteness to be of SO(4,1) type) ore obtained in classical limit, ħ → 0, or in a semiclassical limit in which contributions of first order in ħ are retained. As a byproduct of the formalism, which can be applied to an arbitrary gauge group, a simple derivation of the Lorentz equation and the Bargmann-Michel-Telegdi equation from spinor electrodynamics with anomalous (i.e. nonminimal) coupling is given starting from the associated quantum mechanical Heisenberg equations of motion and specializing the gauge group to the electromagnetic U(1) group.  相似文献   

9.
根据从 QCD生成泛函所建立的夸克和反夸克的传播子、四点格林函数及其它类型的格林函数所满足的运动方程 ,推导出了夸克 -反夸克束缚态的 Bethe- Salpeter方程中相互作用核的明显且封闭的表示式 ,给出了这个表示式的未重整化和重整化了的形式 .这个表示式不仅易于进行微扰计算 ,而且适于进行非微扰的计算 ,特别是它提供了求解夸克禁闭问题一个恰当的理论出发点.The interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states is derived from the Bethe-Salpeter equations satisfied by the quark-antiquark four-point Green s function. The latter equations are established based on the equations of motion obeyed by the quark and antiquark propagators, the four-point Green s function and some other kinds of Green s functions which follow directly from the QCD generating function. The Bethe-Salpeter kernel derived is an exact...  相似文献   

10.
The Migdal renormalization group approach is applied to a finite temperature lattice gauge theory. Imposing the periodic boundary condition in the timelike orientation, the phase structure of the finite temperature lattice gauge system with a gauge groupG in (d+1)-dimensional space is determined by two kinds of recursion equations, describing spacelike and timelike correlations, respectively. One is the recursion equation for ad-dimensional gauge system with the gauge groupG, and the other corresponds to ad-dimensional spin system for which the effective theory is described by the nearest neighbor interaction of the Wilson lines. Detailed phase structure is investigated for theSU(2) gauge theory in (3+1)-dimensional space. Deconfinement phase transition is obtained. Using the recursion equation for the three dimensional spin system of the Wilson lines, it is shown that the flow of the renormalization group trajectories leads to a phase transition of the three dimensional Ising model.  相似文献   

11.
The usual text book one-particle Green's function possesses a self-energy that is known to be an optical potential for elastic scattering. The introduction of an optical potential reduces the complex many-body scattering problem into a tractable one-body problem. In this work the definition of the Green's functions is extended. The defined inelastic functions are shown to possess self-energies that can be expressed in closed form in terms of the target states. It is proven that these self-energies are optical potentials for inelastic scattering. The properties of these potentials and working equations for the scattering wave functions are discussed. Received January 2, 1996; revised June 7, 1996; accepted for publication June 19, 1996  相似文献   

12.
For a lattice gauge theory a necessary and sufficient condition on the gauge group is stated, which assures that the linear span of products of Wilson loop observables is dense in the space of continuous, gauge invariant functions on the configuration space. Some groups which fulfill this condition are exhibited, among themU(N) andSU(N),N=1, 2, 3, ... Finally we prove that generically it is fulfilled for all connected, compact Lie groups.  相似文献   

13.
In this paper a theory is formulated that predicts velocity and spatial correlations between occupation numbers that occur in lattice gas automata violating semi-detailed balance. Starting from a coupled BBGKY hierarchy for then-particle distribution functions, cluster expansion techniques are used to derive approximate kinetic equations. In zeroth approximation the standard nonlnear Boltzmann equation is obtained; the next approximation yields the ring kinetic equation, similar to that for hard-sphere systems, describing the time evolution of pair correlations. The ring equation is solved to determine the (nonvanishing) pair correlation functions in equilibrium for two models that violate semidetailed balance. One is a model of interacting random walkers on a line, the other one is a two-dimensional fluid-type model on a triangular lattice. The numerical predictions agree very well with computer simulations.  相似文献   

14.
It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham–Lorentz–Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0, 1, 2, 3 components correspond to the Maxwell fields). Without additional constraints, the particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous non-linear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that mass-shell deviation is bounded when the external field is removed.  相似文献   

15.
We introduce certain Bäcklund transformations for rational solutions of the Painlevé VI equation. These transformations act on a family of Painlevé VI tau functions. They are obtained from reducing the Hirota bilinear equations that describe the relation between certain points in the 3 component polynomial KP Grassmannian. In this way we obtain transformations that act on the root lattice of A5. We also show that this A5 root lattice can be related to the F4(1) root lattice. We thus obtain Bäcklund transformations that relate Painlevé VI tau functions, parametrized by the elements of this F4(1) root lattice.  相似文献   

16.
Reaction-diffusion equations, in which the reaction is described by a sink term consisting of a sum of delta functions, are studied. It is shown that the Laplace transform of the reactive Green's function can be analytically expressed in terms of the Green's function for diffusion in the absence of reaction. Moreover, a simple relation between the Green's functions satisfying the radiation boundary condition and the reflecting boundary condition is obtained. Several applications are presented and the formalism is used to establish the relationship between the time-dependent geminate recombination yield and the bimolecular reaction rate for diffusion-influenced reactions. Finally, an analogous development for lattice random walks is presented.  相似文献   

17.
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|g2T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bödeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: <hep-ph/9810313>; G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: <hep-ph/0001216>]. In this work we provide a complementary, more analytic approach based on Dyson–Schwinger equations. Using methods known from stochastic quantitation, we recast Bödeker’s Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson–Schwinger equations are derived.  相似文献   

18.
在关联动力学思想框架内,运用生成泛函技术,在时性规范和正则量子化形式下,建立起SU(N)规范理论的约束关联动力学的完整体系,得到了关联Green函数的运动方程组系列.  相似文献   

19.
Using covariant derivatives and the operator definitions of quantum mechanics, gauge invariant Proca and Lehnert equations are derived and the Lorenz condition is eliminated in U(1) invariant electrodynamics. It is shown that the structure of the gauge invariant Lehnert equation is the same in an O(3) invariant theory of electrodynamics.  相似文献   

20.
Dual electrodynamics and corresponding Maxwell’s equations (in the presence of monopole only) are revisited from the symmetry of duality and gauge invariance. Accordingly, the manifestly covariant, dual symmetric and gauge invariant two potential theory of generalized electromagnetic fields of dyons has been developed consistently from U(1)×U(1) gauge symmetry. Corresponding field equations and equation of motion are derived from Lagrangian formulation adopted for U(1)×U(1) gauge symmetry for the justification of two four potentials of dyons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号