首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

2.
A series of novel lanthanide polyoxomolybdates was synthesized by reaction of lanthanide cations with the Anderson type anion (TeMo(6)O(24))(6-). The polyoxometalates K(6n)(TeMo(6)O(24))(n)[(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n)[middle dot]16nH(2)O (Ln = Eu, Gd) and K(3n)[Ln(H(2)O)(5)(TeMo(6)O(24))](n)[middle dot]6nH(2)O (Ln = Tb, Dy, Ho, Er) were characterized by X-ray structure analysis, elemental analysis and IR spectroscopy. We found that the solid-state structures of Ln/(TeMo(6)O(24))(6-) compounds are strongly dependent on the lanthanide cations, and therefore represent a rare example for different arrangements of building units depending on the nature of the rare earth cations. While the Eu(3+) and Gd(3+) cations achieve ninefold coordination by seven water molecules and two terminal oxygen atoms of the (TeMo(6)O(24))(6-) anions, the Tb(3+), Dy(3+), Ho(3+) and Er(3+) cations are coordinated by five water molecules, two terminal oxygen atoms and one molybdenum-bridging oxygen atom belonging to the (TeMo(6)O(24))(6-) anion. The europium and gadolinium substituted compounds contain infinite one-dimensional [(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n) chains; the terbium, dysprosium, holmium and erbium compounds contain infinite one-dimensional [Ln(H(2)O)(5)(TeMo(6)O(24))](n)(3n-) chains.  相似文献   

3.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

4.
Decomplexation of the trivalent lanthanide, Ln(III), from the racemic bimetallic triple-stranded helicates [LnCr(L8)(3)](6+) provides the inert chiral tripodal nonadentate receptor [Cr(L8)(3)](3+). Elution of the latter podand with Na(2)Sb(2)[(+)-C(4)O(6)H(2)](2).5H(2)O through a cation exchange column allows its separation into its inert helical enantiomers M-(+)(589)-[Cr(L8)(3)](3+) and P-(-)(589)-[Cr(L8)(3)](3+), whose absolute configurations are assigned by using CD spectroscopy and exciton theory. Recombination with Ln(III) restores the original triple-stranded helicates [LnCr(L8)(3)](6+), and the associated thermodynamic parameters unravel the contribution of electrostatic repulsion and preorganization to the complexation process. Combining M-(+)(589)-[Cr(L8)(3)](3+) with Eu(III) produces the enantiomerically pure d-f helicate MM-(-)(589)-[EuCr(L8)(3)](CF(3)SO(3))(6).4CH(3)CN, whose X-ray crystal structure (EuCrC(113)H(111)N(25)O(21)S(6)F(18), monoclinic, P2(1), Z = 2) unambiguously confirms the absolute left-handed configuration for the final helix. The associated ligand-centered and metal-centered chiro-optical properties recorded for the complexes MM-[LnCr(L8)(3)](6+) and PP-[LnCr(L8)(3)](6+) (Ln = Eu, Gd, Tb) show a strong effect of helicity on specific rotary dispersions, CD and CPL spectra.  相似文献   

5.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

6.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

7.
A convenient method for the preparation of barbiturate transition metal complexes: (i) Cr(3+), Mn(2+), Fe(3+), Zn(2+) and Cd(2+) ions with barbituric acid (H(2)L) and (ii) Cr(3+) and Mo(5+) with 2-thiobarbituric acid (H(2)L') was reported and this has enabled seven complexes to be formulated as: [Cr(HL)(2)(OH)(H(2)O)].H(2)O, [Mn(HL)(2)(H(2)O)(2)], [Fe(2)(L)(OH)(3)(H(2)O)(4)].2H(2)O, [Zn(HL)(2)], [Cd(HL)(2)], [Cr(HL')(OH)(2)(H(2)O)].H(2)O and [Mo(HL')(2)]Cl. These new barbiturate complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that, all complexes of barbituric and 2-thiobarbituric acids are non-electrolytes except for [Mo(HL')(2)]Cl. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the mode of coordination. Kinetic and thermodynamic parameters such as: E, DeltaH, DeltaS and DeltaG are estimated according to the DTG curves. The two ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

8.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

9.
The serendipitous discovery of a 3D [Cu(CO(3))(2)(2-)](n) network with the topology of the 4(2)6(4) sodalite net in [Cu(6)(CO(3))(12)(CH(6)N(3))(8)].K(4).8H(2)O paved the way for the deliberate engineering of an extensive series of structurally related guanidinium-templated metal carbonates of composition [M(6)(CO(3))(12)(CH(6)N(3))(8)]Na(3-)[N(CH(3))(4)].xH(2)O, where the divalent metal M in the framework may be Mg, Mn, Fe, Co, Ni, Cu, Zn, or Cd. A closely related crystalline material with a [Ca(CO(3))(2)(2-)](n) sodalite-like framework, but containing K(+) rather than Na(+), of composition [Ca(6)(CO(3))(12)(CH(6)N(3))(8)]K(3)[N(CH(3))(4)].3H(2)O was also isolated. All of these compounds were obtained under the simplest possible conditions from aqueous solution at room temperature, and their structures were determined by single-crystal X-ray diffraction. Pairs of guanidinium cations are associated with the hexagonal windows of the sodalite cages, alkali-metal cations are associated with their square windows, and N(CH(3))(4)(+) ions are located at their centers. Structures fall into two classes depending on the metal, M(II), in the framework. One type, the BC type (Im3m), comprising the compounds for which M(2+) = Ca(2+), Mn(2+), Cu(2+), and Cd(2+), has a body-centered cubic unit cell, while the second type, the FC type (Fd3c), for which M(2+) = Mg(2+), Fe(2+), Co(2+), Ni(2+), and Zn(2+), has a face-centered cubic unit cell with edges on the order of twice those of the BC structural type. The metal M in the BC structures has four close carbonate oxygen donors and four other more distant ones, while M in the FC structures has an octahedral environment consisting of two bidentate chelating carbonate ligands and two cis monodentate carbonate ligands.  相似文献   

10.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

11.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

12.
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.  相似文献   

13.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

14.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

15.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

16.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

17.
An H  Han Z  Xu T 《Inorganic chemistry》2010,49(24):11403-11414
A family of three-dimensional (3D) architectures based on lanthanide-substituted polyoxometaloborate building blocks, [LnK(H(2)O)(12)][Ln(H(2)O)(6)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·20H(2)O (Ln = Ce 1, Nd 2), H(2)K(2)(H(2)O)(n)[(C(6)NO(2)H(5))Ln(H(2)O)(5)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·18H(2)O (Ln = Ce n = 8 3, Nd n = 9 4, C(6)NO(2)H(5) = pyridine-4-carboxylic acid), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, and are built up of lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with one-dimensional (1D) channels. The polyoxoanion [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions, constituted by two [BW(11)O(39)H](8-) polyoxoanions and two lanthanide cations. When pyridine-4-carboxylic acid ligand was added to the reaction system of 1, 2, compounds 3, 4 were obtained. Isostructural compounds 3 and 4 are constructed from the lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by the [Ln(C(6)NO(2)H(5))](3+) bridges to form a 3D channel framework. From the topological point of view, the 3D nets of compounds 1-4 are binodal with three- and six-connected nodes and exhibit a rutile topology. Compounds 1-4 represent the examples of 3D architectures based on lanthanide-substituted polyoxometalates. The magnetic properties of compounds 1-4 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K.  相似文献   

18.
Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.  相似文献   

19.
The reaction of aqueous [W3S7(C2O4)3](2-) with Ln(3+) and Th(4+) in a 1:1 molar ratio leads to oxalate-bridged heteropolynuclear molecular complexes and coordination polymers. La(3+) and Ce(3+) give a layered structure with big (about 1.8 nm) honeycomb pores which are filled with water molecules and lanthanide ions, in {[Ln(H2O)6]3[W3S7(C2O4)3]4}Br x xH2O (Ia and Ib). The smaller Pr(3+), Nd(3+), Sm(3+), Eu(3+), and Gd(3+) ions give discrete nanomolecules [(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)] (with a separation of about 3.2 nm between the most distant parts of the molecule), which are further united into zigzag chains by specific S2...Br- contacts to achieve the overall stoichiometry K[(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)]Br.xH2O (IIa-IId). Th(4+) gives K2[(W3S7(C2O4)3)4Th2(OH)2(H2O)10] x 14.33H2O (III) with a nanosized discrete anion (with a separation of about 2.7 nm between the most distant parts of the molecule), in which two thorium atoms are bound via two hydroxide groups into the Th2(OH)2(6+) unit, and each Th is further coordinated by five water molecules and two monodentate [W3S7(C2O4)](2-) cluster ligands. All compounds were characterized by X-ray structure analysis and IR spectroscopy. Magnetic susceptibility measurements in the temperature range of 2-300 K show weak antiferromagnetic interactions between two lanthanides atoms for compounds IIa, IIb, and IId. The thermal decomposition of Ia, Ib, and IIb was studied by thermogravimetry.  相似文献   

20.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号