首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of original 2-indenylidene palladium pincer complexes {PdL[Ind(Ph(2)P==S)(2)]} (L = HNCy(2), PPh(3), Cl(-)) have been prepared by double C-H activation of a 1,3-bis(thiophosphinoyl)indene proligand. Crystallographic analyses and DFT calculations indicate that the bonding situation of the {Pd[Ind(Ph(2)P==S)(2)]} fragment is essentially governed by the conjugated and rigid nature of the dianionic pincer ligand, the nature of the coligand having little influence. The formation of the 2-indenylidene complexes involves either a 2-indenyl pincer or a four-membered cyclometalated complex as an intermediate, suggesting that C(sp(2))-H or C(sp(3))-H bond activation takes place. However, deuterium labelling experiences show that in all cases, C(sp(3))-H bond activation occurs followed eventually by a Pd/H exchange. Nevertheless, evidence for direct C(sp(2))-H bond activation under mild conditions is obtained when a methyl group is introduced at the indene proligand to prevent C(sp(3))-H bond activation. The ensuing dissymmetrical 2-indenyl palladium pincer complex has been fully characterized.  相似文献   

2.
The first transition-metal-catalyzed activation of silyl C(sp(3))-H bond was realized and synthetically applied. A variety of organic skeletons substituted with SiMe(3) groups could undergo the Pd-catalyzed intramolecular coupling reaction, resulting in an unprecedented synthetic method for yielding six-membered silacycles. It was found that the adjacent Si atom played an essential role for the activation of the C(sp(3))-H bond of the SiMe(3) group; no activation reaction of the C(sp(3))-H bond of the CMe(3) group took place under the same reaction conditions.  相似文献   

3.
Mita T  Michigami K  Sato Y 《Organic letters》2012,14(13):3462-3465
One of the most challenging transformations in current organic chemistry is the catalytic carboxylation of a C(sp(3))-H bond using CO(2) gas, an inexpensive and ubiquitous C1 source. A sequential protocol for C(sp(3))-H carboxylation by employing a nitrogen-directed, metal-assisted, C-H activation/catalytic silylation reaction in conjunction with fluoride-mediated carboxylation with CO(2) was established. The carboxylation proceeded only at the benzylic C(sp(3))-Si bond, not at the aromatic C(sp(2))-Si, which is advantageous for further manipulations of the products.  相似文献   

4.
Pierre C  Baudoin O 《Organic letters》2011,13(7):1816-1819
Polycyclic molecules were obtained in good yields by double C(sp(2))-H/C(sp(3))-H arylations mediated by a single palladium/phosphine catalyst. Both double intermolecular/intramolecular and intramolecular/intramolecular C-C couplings were performed successfully, which indicates that this concept has a broad applicability for the rapid construction of molecular complexity.  相似文献   

5.
Quite select: a new strategy was developed for the synthesis of various oxindoles from carbamoyl chlorides. Under the optimum reaction conditions, with Ad(2)PBu as a ligand, tBuCONHOH as an additive, and a CO atmosphere, selective C(sp(3))-H activation proceeded in the presence of a C(sp(2))-H bond. Ad=adamantyl.  相似文献   

6.
Li Y  Li Z  Xiong T  Zhang Q  Zhang X 《Organic letters》2012,14(13):3522-3525
A novel Selectfluor-mediated copper-catalyzed highly selective benzylic C-O cyclization for the synthesis 4H-3,1-benzoxazines is reported. The predominant selectivity for a benzylic C(sp(3))-H over an aromatic C(sp(2))-H bond in N-o-tolylbenzamides is achieved.  相似文献   

7.
The covalent binding of acetylethyne on Si(100)-2 x 1 has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The HREELS spectra of chemisorbed monolayers show the absence of the C=O, C[triple bond]C, and C(sp)-H stretching modes coupled with the appearance of C=C (at 1580 cm(-1)) and C(sp2)-H (at 3067 cm(-1)) stretching modes. This demonstrates that both of the C=O and CC groups of acetylethyne directly participate in binding with silicon surfaces to form C-O and C=C bonds, respectively, which is further confirmed by the XPS studies. A tetra-sigma-binding configuration through two [2 + 2]-like cycloaddition reactions in acetylethyne binding on Si(100) is proposed to account for the experimental observation. The cycloadduct containing a C=C double bond may be employed as an intermediate for further in situ chemical syntheses of multilayer organic thin films or surface functionalization.  相似文献   

8.
This paper describes the first direct approach to alkenyl nitriles from allylarenes or alkenes facilitated by an inexpensive homogeneous iron catalyst. Three C-H bond cleavages occur under the mild conditions during this process. Mechanistic studies indicate that the cleavage of the allyl C(sp(3))-H bond is involved in the rate-determining step. This observation may provide an opportunity to achieve C(sp(3))-H functionalization catalyzed by an iron catalyst.  相似文献   

9.
Reactions of [(az(-H))Pd(μ-Cl)(2)Pd(az(-H))] (az = azobenzene) with the zwitterionic, p-benzoquinonemonoimine-type ligands 4-(n-butylamino)-6(n-butylimino)-3-oxocyclohexa-1,4-dien-1-olate (Q(1)) or 4-(isopropylamino)-6(isopropylimino)-3-oxocyclohexa-1,4-dien-1-olate) (Q(2)) in the presence of a base leads to the formation of the mononuclear complexes [(az(-H))Pd(Q(1)(-H))] (1) and [(az(-H))Pd(Q(2)(-H))] (2) respectively. Structural characterization of 2 shows an almost square planar coordination geometry around the Pd(II) centre, a short Pd-C bond, a slight elongation of the N=N double bond of the az(-H) ligand and localization of the double bonds within the Q(2)(-H) ligand. Additionally, intermolecular N-H-O interactions exist between the uncoordinated N-H and O groups of two different molecules. Cyclic voltammetry of the complexes reveals an irreversible oxidation and two reversible reduction processes. A combination of electrochemical and UV-vis-NIR and EPR spectroelectrochemical studies are used to show that both coordinated ligands participate successively in the redox processes, thus revealing their non-innocent character.  相似文献   

10.
Formamides having 1-arylalkyl groups on nitrogen undergo an unprecedented dehydrogenative [4 + 2] cycloaddition reaction with alkynes via nickel/AlMe(3) cooperative catalysis to give highly substituted dihydropyridone derivatives in good yields. Notably, the transformation proceeds through double functionalization of C(sp(2))-H and C(sp(3))-H bonds in the formamides.  相似文献   

11.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

12.
A Cu(II) mediated oxidative C(sp(2))-H and C(sp(3))-H coupling protocol gives access to aza-oxindoles in good to excellent yield in the presence of NaOtBu as base and toluene as solvent.  相似文献   

13.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

14.
Onium amides, generated in situ from the combination of aminosilanes and onium fluorides (R(4)PF, R(4)NF), are employed for the first time as bases for catalytic deprotonative functionalization of C(sp(2))-H and activated C(sp(3))-H bonds under mild conditions.  相似文献   

15.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

16.
T Nanjo  C Tsukano  Y Takemoto 《Organic letters》2012,14(16):4270-4273
Synthesis of the indole skeleton was achieved using a Pd-catalyzed cascade process consisting of isocyanide insertion and benzylic C(sp(3))-H activation. It was found that slow addition of isocyanide is effective for reducing the amount of catalyst needed and Ad(2)P(n)Bu is a good ligand for C(sp(3))-H activation. The construction of the tetracyclic carbazole skeleton was also achieved by a Pd-catalyzed domino reaction incorporating alkyne insertion.  相似文献   

17.
DFT(B3PW91) calculations of the mechanism of the intramolecular C(sp(3))-H arylation of 2-bromo-tert-butylbenzene to form benzocyclobutene catalysed by Pd(PR(3)) (R = Me, (t)Bu) and a base (acetate, bicarbonate, carbonate) show that the preferred mechanism is highly dependent on the nature of the phosphine and the base used in the calculations. With the experimental reagents (P(t)Bu(3) and carbonate) the rate-determining step is C-H activation with the base coordinated trans to the C-H bond. An agostic interaction of a geminal C-H bond with respect to the bond to be cleaved induces a lowering of the activation barrier.  相似文献   

18.
A synthetic strategy of 4-benzyl-substituted 1,3-butadiene derivatives through Pd-catalyzed three-component coupling reaction of benzyl chlorides, alkynes, and monosubstituted alkenes is described. This tandem coupling reaction forms a C(sp(3))-C(sp(2)) bond and a C(sp(2))-C(sp(2)) bond sequentially in a single-step operation.  相似文献   

19.
A range of tricyclic nitrogen heterocycles were synthesized in a straightforward and efficient manner via a sequence involving palladium-catalyzed N-arylation and C(sp(3))-H arylation as the key steps. Whereas the C(sp(3))-H arylation furnished fused 6,5,6-membered ring systems efficiently, the formation of the more strained 6,5,5-membered systems proved to be more challenging and required a subtle adjustment of the reaction conditions.  相似文献   

20.
We report the efficient synthesis of alkyl ethers by the functionalization of unactivated sp(3)- and sp(2)-hybridized C-H bonds. In the Pd(OAc)(2)-catalyzed, PhI(OAc)(2)-mediated reaction system, picolinamide-protected amine substrates undergo facile alkoxylation at the γ or δ positions with a range of alcohols, including t-BuOH, to give alkoxylated products. This method features a relatively broad substrate scope for amines and alcohols, inexpensive reagents, and convenient operating conditions. This method highlights the emerging value of unactivated C-H bonds, particularly the C(sp(3))-H bond of methyl groups, as functional groups in organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号