共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a novel nanoporous carbon membrane for separation of hydrogen-hydrocarbon gas mixtures is described. The membrane selectively adsorbs hydrocarbons from hydrogen at the high pressure side and the adsorbed molecules then diffuse along the pore walls to the low pressure side. Pressure levels at thigh gh and low pressure sides of the membrane and the type and flow rate of the sweep gas at the low pressure side of the membrane were varied. The effects of these variables on the hydrogen recovery and hydrocarbon rejection by the membrane were investigated. 相似文献
2.
Gas flow has been considered in a porous membrane with nanosized channels, for which the influence of surface forces and relevant effects must be taken into account. The problem of entropy production in such systems has been discussed. It has been shown that, when calculating the total entropy production in such a system, it is necessary to take into account the entropy production at the inlets and outlets of the channels of the porous body. The entropy production has been determined, and the phenomenological equations describing the heat and mass transfer through the porous body-gas interface have been found. 相似文献
3.
Mixed matrix membranes (MMMs) have received worldwide attention for natural gas purification due to their superior performance in terms of permeability and selectivity. The zeolitic imidazole framework-8 (ZIF-8) blended polysulfone (PSf) membranes have been fabricated for natural gas purification. ZIF-8 was selected due to its low cost, remarkable thermal and chemical stabilities, and tunable microporous structure. The neat PSf hollow fiber membrane and mixed matrix hollow fiber membranes incorporated with the various ZIF-8 loadings up to 1.25% were fabricated. The prepared membranes were evaluated using field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and gas separation performance. The low loading of ZIF-8 nanoparticles to the MMM improved thermal stability and glass transition temperature and yielded low surface roughness. MMMs were tested using pure gases with a significant improvement of 36% in CO 2 permeability and 28% in CO 2/CH 4 selectivity compared to the neat membrane. However, the high ZIF-8 loading reduced the separation performances. Moreover, CO 2/CH 4 selectivity decreased at elevated pressure (8 and 10 bar) due to CO 2-induced plasticization. Previously, the incorporation of ZIF-8 particles has primarily been subjected to the fabrication of flat sheet membranes, whereas this work focused on hollow fiber membranes which are rarely investigated. Hence, the promising results obtained at low feed pressure in this study demonstrated the potential of ZIF-8 based hollow fiber membrane for natural gas purification. 相似文献
4.
Graphene oxide (GO) membranes show great potential in molecular separation for water treatment. However, the inferior stability of GO membranes is a major bottleneck for practical applications. In this study, bio-inspired polydopamine (PDA) deposition is reported for enhancing the stability of GO membranes. Through simple and mild immersion, PDA is self-polymerized on GO membranes. The blocking of PDA chains to membrane defects improves the rejections for various molecules. Because the inherently strong adhesion and crosslinking of PDA greatly strengthen the interactions of substrates to GO layers and the binding force of GO nanosheets, the prepared PDA-GO membranes exhibit impressive long-term stability in cross-flow filtration, and maintain good nanofiltration performance at various feed pressures, tangential velocities, and even after external scratching. Moreover, because the deposited PDA layers obstruct the direct contact between GO and contaminants, the antifouling property of the PDA-GO membranes increases substantially, with recovery ratio about 98%. 相似文献
5.
Composites of polybenzimidazole (PBI) with proton-exchanged AMH-3 and swollen AMH-3 were prepared, characterized by electron microscopy and X-ray scattering and tested for hydrogen/carbon dioxide ideal selectivity. Proton-exchanged AMH-3 was prepared under mild conditions by the ion exchange of Sr and Na cations in the original AMH-3 using aqueous solution of dl-histidine. Swollen AMH-3 was prepared by sequential intercalation of dodecylamine following the ion exchange in the presence of dl-histidine. Both silicate materials were introduced into a continuous phase of PBI as a selective phase. Mixed matrix nanocomposite membranes, prepared under certain casting conditions, with only 3 wt% of swollen AMH-3 present substantial increase of hydrogen/carbon dioxide ideal selectivity at 35 °C, i.e., more than by a factor of 2 compared to pure PBI membranes (40 vs. 15). Similar ideal selectivity was observed using higher loadings (e.g., 14%) of proton-exchanged AMH-3 particles suggesting that transport of hydrogen is faster than carbon dioxide in AMH-3-derived silicates. However, the ideal selectivity of mixed matrix membranes approaches that of pure polymer as the operating temperature increases to 100 °C and 200 °C. The composite membranes with AMH-3-derived materials were compared with MCM-22/PBI membranes. Composite membranes incorporating MCM-22 plate-like crystals show no selectivity enhancements possibly due to the presence of larger pores in MCM-22. 相似文献
6.
Most water in the world is as saline water in seas and oceans. Desalination technology is a promising method to solve the global water crisis. Recently, many attentions have been paid to the graphene-based membranes in water desalination due to their low production cost and high efficiency. In this paper, molecular dynamics simulations are employed to investigate the effect of functionalized graphene nanosheet (GNS) membranes on the performance of salt separation from seawater in terms of water permeability and salt rejection. For this purpose, the hydrogenated (–H) and fluorinated (–F) pores were created on the GNS membrane. Then, the functionalized graphene membrane was placed in the middle of the simulation box in an aqueous ionic solution containing Na+ and Cl? ions. The applied pressure (in the range of 10–100 MPa) was used as the driving force for transport of water molecules across the reverse osmosis (RO) graphene-based membrane in order to obtain the water permeability and salt rejection. Also, radial distribution functions (RDFs) of ion–water and water–water as well as the water density map around the membrane were obtained. The results indicated that the hydrophilic chemical functions such as fluorine (–F) can improve the water permeability at low pressures. 相似文献
7.
Journal of Solid State Electrochemistry - Flexible nanoporous nitrogen-doped graphene film ( PNGF) prepared by facile hydrothermal ammonia reaction of nanoporous graphene oxide film (PGOF) is... 相似文献
8.
A nanoporous N-doped reduced graphene oxide (p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries. The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%. When used as sulfur cathode, the obtained p-N-rGO/S composite has a high reversible capacity of 1110 mAh g -1 at 1C rate and stable cycling performance with 781.8 mAh g -1 retained after 110 cycles, much better than those of the rGO/S composite. The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping, which provide efficient contact and wetting with the electrolyte, accommodate volume expansion and immobilize polysulfides during cycling. 相似文献
9.
The preparation and characterization of coatings made from polydiacetylene colloids on nano- and microporous membranes and their potential for the detection of microorganisms are presented. 相似文献
10.
With characteristic of structural integrity and high surface area, nanoporous gold (NPG) prepared by dealloying method is proposed to be a highly sensitive catalyst for glucose electrooxidation. It can be found that a-NPG which obtained by electrochemical corrosion method has the highest sensitivity for glucose electrooxidation among the three studied samples. Under alkaline conditions, the catalytic current density of a-NPG is over 1.5 times and 17 times higher than that of f-NPG (prepared by free corrosion) and poly-Au electrode, respectively. Using a-NPG sample for glucose detection, the obtained minimum sensible concentration are 413 nM in alkaline media and 1 μM in neutral solutions. The a-NPG electrode also shows stable recovery and reproducibility characteristics. These results indicate that NPG may work as an efficient electrode material for electrochemical sensors and a promising catalyst for alkaline glucose fuel cells. 相似文献
11.
Thin-film opals comprising three layers of 440 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with amino groups on the silica surface. Diffusion of anionic, cationic, and neutral redox species through the opals was studied by cyclic voltammetry. The chemically modified opal membranes demonstrate high molecular throughput and, at low pH, selectively block transport of a cationic redox species relative to that of anionic and neutral redox species. This permselective behavior is attributed to the electrostatic interactions that are enhanced by the tortuous pathway within the opal and by the high surface area of the chemically modified spheres. 相似文献
12.
Monodispersed silica particles with bimodal size distribution were successfully prepared through adding an ethanol (EtOH) solution containing tetraethylorthosilicate (TEOS) dropwise into an ammonia EtOH solution at a constant low rate. The effects of the reaction parameters such as ammonia/ethanol ratio, feeding rate of TEOS solution, reaction temperature, and time on the size and size distribution of the as-obtained particles were investigated. Based on these phenomena, a modified LaMer model of nucleation and growth mechanism was proposed to reasonably explain the formation of the as-obtained silica particles with bimodal size distribution. The as-prepared monodispersed silica particles with bimodal size distribution can be directly fabricated into binary colloidal crystals with small particles surrounding large particles by evaporation-induced cooperative self-assembly. This suggests that the method reported here provides a straightforward and effective route to the in situ fabrication of novel binary colloidal crystals and their replicated patterns in one reaction system. 相似文献
14.
Microfluidic devices integrating membrane-based sample preparation with electrophoretic separation are demonstrated. These multilayer devices consist of 10 nm pore diameter membranes sandwiched between two layers of PDMS substrates with embedded microchannels. Because of the membrane isolation, material exchange between two fluidic layers can be precisely controlled by applied voltages. More importantly, since only small molecules can pass through the nanopores, the integrated membrane can serve as a filter or a concentrator prior to microchip electrophoresis under different design and operation modes. As a filter, they can be used for separation and selective injection of small analytes from sample matrix. This has been effectively applied in rapid determination of reduced glutathione in human plasma and red blood cells without any off-chip deproteinization procedure. Alternatively, in the concentrator mode, they can be used for online purification and preconcentration of macromolecules, which was illustrated by removing primers and preconcentrating the product DNA from a PCR product mixture. 相似文献
15.
Approximately 25 cm×25 cm large sheets of crosslinked highly porous poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate-co-ethylhexyl methacrylate) membranes with an average thicknesses between 285 and 565 μm were prepared by casting a high internal phase emulsion (HIPE) containing monomers onto glass substrates and subsequent polymerisation. Open cellular porous polyHIPE type membranes were obtained with large pores (cavity) sizes between 3 and 10 μm while interconnecting pores were between 1 and 3 μm. The percentage of ethylhexyl acrylate and ethyleneglycol dimethacrylate influenced the flexibility and morphology of the resulting membranes. Porous membranes were chemically modified with diethylamine to yield functionalised supports for ion exchange chromatography. Cylindrical housings were used for positioning of the membranes and allowing flow of the mobile phase. Pulse experiments were used to study the flow characteristics and a homogeneous flow through the entire area of the membrane was found. Bovine serum albumin was purified by a 8 ml column containing functional membrane in modular shape; dynamic binding capacity was measured to be as high as 45 mg/ml. 相似文献
16.
In this study, the water permeability, the rejection property of sucrose and glucose, the fouling property of humic acid as the foulant for a novel porous fluorinated polyimide membrane made by combining the ion irradiation and plasma treatment have been reported. First, an asymmetric polyimide membrane with a defect‐free and thin skin layer was prepared, then ions on the skin layer were irradiated and the ion‐irradiated layer was treated by plasma to form nanopores in the layer. The asymmetric polyimide membranes with a defect‐free skin layer were irradiated with 50 keV He + at 1 × 10 15 ions/cm 2, and the irradiated polyimide surfaces were treated by Ar glow discharge. The porous polyimide membrane showed a high water flux and excellent rejection properties and fouling resistance when compared with NTR‐7250, which is commercially available. These findings indicated that the pore size formed on the porous polyimide membrane was effectively controlled by the plasma treatment time and the skin layer thickness. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
Cobalt-doped silica membranes were synthesized using tetraethyl orthosilicate-derived sol mixed with cobalt nitrate hexahydrate. The cobalt-doped silica structural characterization showed the formation of crystalline Co 3O 4 and silanol groups upon calcination. The metal oxide phase was sequentially reduced at high temperature in rich hydrogen atmosphere resulting in the production of high quality membranes. The cobalt concentration was almost constant throughout the film depth, though the silica to cobalt ratio changed from 33:1 at the surface to 7:1 at the interface with the alumina layer. It is possible that cobalt has more affinity to alumina, thus forming CoOAl 2O 3. The He/N 2 selectivities reached 350 and 570 at 160 °C for dry and 100 °C wet gas testing, respectively. Subsequent exposure to water vapour, the membranes was regenerated under dry gas condition and He/N 2 selectivities significantly improved to 1100. The permeation of gases generally followed a temperature dependency flux or activated transport, with best helium permeation and activation energy results of 9.5 × 10 −8 mol m −2 s −1 Pa −1 and 15 kJ mol −1. Exposure of the membranes to water vapour led to a reduction in the permeation of nitrogen, attributed to water adsorption and structural changes of the silica matrix. However, the overall integrity of the cobalt-doped silica membrane was retained, given an indication that cobalt was able to counteract to some extent the effect of water on the silica matrix. These results show the potential for metal doping to create membranes suited for industrial gas separation. 相似文献
18.
An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4x10(6) Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately<20sigma. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores. 相似文献
19.
Nanoporous membranes provide a basis for constructing non-supported biomembranes, which enable biological processes such as ion and molecule transport through the biomembranes to be investigated under physiological conditions with ease of control. Preparation of such membranes usually requires expensive equipments and extensive experiences. In this paper, we provide a cheap and controllable scheme of high volume fabricating suspended nanoporous Si 3N 4 membranes on a Si wafer by combined colloidal lithography and standard Si fabrication technology including low cost ICP etching and anisotropic Si wet-etch. Si 3N 4 layers are grown on Si wafers. Polystyrene particles of 200-nm-diameter are then monodispersed on the Si 3N 4 layers based on electrostatic repulsions with an average density of 2%. This is followed by Cr masking, ICP etching and Si wet-etch processes to form suspended Si 3N 4 membranes with 200-nm-deep nanopores through the membranes. The well-aligned cylindrical nanopores have a low aspect radio of ca. 0.9, which would be beneficial to forming stable suspended lipid bilayers. 相似文献
20.
The aim of the present work was to establish a fundamental link between the basic structural properties of ceramic nanoporous membranes made by the sol-gel process and their respective transport properties, for a systematic evaluation of their performance in gas and liquid applications. For this purpose, supported and unsupported gamma-Al2O3 and TiO2 membranes were prepared from different colloidal dispersions (sols) by a sol-gel dipping process followed by drying and calcination, resulting in structures of crystallites of different shape and stacking arrangement. Accordingly, the pore structure of each membrane was simulated employing process-based reconstruction techniques and the permeation properties were predicted by solving the appropriate transport equations in the generated structures. Excellent agreement was achieved between the computed and experimental permeability values in the Knudsen and viscous flow regimes, validating the considerations made regarding the basic structural characteristics and the procedure for generation of the membrane structures. Moreover, it was shown that the shape and stacking arrangement of the primary particles (crystallites) of the sol have a major impact on the formation of pathways in the membrane pore structures and control the transport and therefore also the separation properties of these materials. 相似文献
|