首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A single-sided transient plane source technique has been used to determine the thermal conductivity and thermal diffusivity of a compacted methane hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. The average thermal conductivity, 0.68 +/- 0.01 W/(m K), and thermal diffusivity, 2.04 x 10(-7) +/- 0.04 x 10(-7) m2/s, values are, respectively, higher and lower than previously reported values. Equilibrium molecular dynamics (MD) simulations of methane hydrate have also been performed in the NPT ensemble to estimate the thermal conductivity for methane compositions ranging from 80 to 100% of the maximum theoretical occupation, at 276 K and at pressures ranging from 0.1 to 100 MPa. Calculations were performed with three rigid potential models for water, namely, SPC/E, TIP4P-Ew, and TIP4P-FQ, the last of which includes the effects of polarizability. The thermal conductivities predicted from MD simulations were in reasonable agreement with experimental results, ranging from about 0.52 to 0.77 W/(m K) for the different potential models with the polarizable water model giving the best agreement with experiments. The MD simulation method was validated by comparing calculated and experimental thermal conductivity values for ice and liquid water. The simulations were in reasonable agreement with experimental data. The simulations predict a slight increase in the thermal conductivity with decreasing methane occupation of the hydrate cages. The thermal conductivity was found to be essentially independent of pressure in both simulations and experiments. Our experimental and simulation thermal conductivity results provide data to help predict gas hydrate stability in sediments for the purposes of production or estimating methane release into the environment due to gradual warming.  相似文献   

2.
The properties of two improved versions of charge-on-spring (COS) polarizable water models (COS/G2 and COS/G3) that explicitly include nonadditive polarization effects are reported. In COS models, the polarization is represented via a self-consistently induced dipole moment consisting of a pair of separated charges. A previous polarizable water model (COS/B2), upon which the improved versions are based, was developed by Yu, Hansson, and van Gunsteren. To improve the COS/B2 model, which overestimated the dielectric permittivity, one additional virtual atomic site was used to reproduce the water monomer quadrupole moments besides the water monomer dipole moment in the gas phase. The molecular polarizability, residing on the virtual atomic site, and Lennard-Jones parameters for oxygen-oxygen interactions were varied to reproduce the experimental values for the heat of vaporization and the density of liquid water at room temperature and pressure. The improved models were used to study the properties of liquid water at various thermodynamic states as well as gaseous water clusters and ice. Overall, good agreement is obtained between simulated properties and those derived from experiments and ab initio calculations. The COS/G2 and COS/G3 models may serve as simple, classical, rigid, polarizable water models for the study of organic solutes and biopolymers. Due to its simplicity, COS type of polarization can straightforwardly be used to introduce explicit polarization into (bio)molecular force fields.  相似文献   

3.
Molecular-dynamics simulation results on thermodynamic and transport properties of pure H2S under conditions of practical interest are presented. Our data are in very good quantitative agreement with the scarce experimental data and estimates on thermophysical properties of this substance. Our results serve as a test of the validity of the intermolecular potential used in the simulations as well as the consistency of the existing data in the studied range. New simulation data on thermal conductivity at low temperature as well as in supercritical states are also reported. Furthermore, we present a comparative analysis between the local order in the liquid phase of pure hydrogen sulfide and water, due to the molecular analogies between both substances, and its relation with the formation of H=S bonds. Our results indicate that under the same corresponding thermodynamic states, H2S is a much less structured substance, with a first solvation shell with a dodecahedral order instead of the tetrahedral order observed in water.  相似文献   

4.
Density, self-diffusion coefficient, and shear viscosity of pure liquid water are predicted for temperatures between 280 and 373 K by molecular dynamics simulation and the Green-Kubo method. Four different rigid nonpolarizable water models are assessed: SPC, SPC/E, TIP4P, and TIP4P/2005. The pressure dependence of the self-diffusion coefficient and the shear viscosity for pure liquid water is also calculated and the anomalous behavior of these properties is qualitatively well predicted. Furthermore, transport properties as well as excess volume and excess enthalpy of aqueous binary mixtures containing methanol or ethanol, based on the SPC/E and TIP4P/2005 water models, are calculated. Under the tested conditions, the TIP4P/2005 model gives the best quantitative and qualitative agreement with experiments for the regarded transport properties. The deviations from experimental data are of 5% to 15% for pure liquid water and 5% to 20% for the water + alcohol mixtures. Moreover, the center of mass power spectrum of water as well as the investigated mixtures are analyzed and the hydrogen-bonding structure is discussed for different states.  相似文献   

5.
A four-site rigid water model is presented, whose parameters are fitted to reproduce the experimental static dielectric constant at 298 K, the maximum density of liquid water and the equation of state at low pressures. The model has a positive charge on each of the three atomic nuclei and a negative charge located at the bisector of the HOH bending angle. This charge distribution allows increasing the molecular dipole moment relative to four-site models with only three charges and improves the liquid dielectric constant at different temperatures. Several other properties of the liquid and of ice Ih resulting from numerical simulations with the model are in good agreement with experimental values over a wide range of temperatures and pressures. Moreover, the model yields the minimum density of supercooled water at 190 K and the minimum thermal compressibility at 310 K, close to the experimental values. A discussion is presented on the structural changes of liquid water in the supercooled region where the derivative of density with respect to temperature is a maximum.  相似文献   

6.
We calculate viscosity and thermal conductivity in systems of Lennard-Jones particles consisting of coexisting solid and liquid with different interface wetting properties using the recently developed equilibrium boundary fluctuation theory. We compare the slip length and equivalent liquid length obtained from these calculations with those obtained from nonequilibrium molecular dynamics. The equilibrium and nonequilibrium calculations of the slip length and the sum of the thermal equivalent lengths are in good agreement. We conclude that for both interfacial properties, the nonequilibrium simulations were probing the linear response. The significant dependence of the intrinsic equivalence length on the interfacial temperature difference used to generate the thermal gradient is explained as a consequence of the different thermodynamic states of the two interfaces.  相似文献   

7.
Fundamental transport properties of liquid para-hydrogen (p-H(2)), i.e., diffusion coefficients, thermal conductivity, shear viscosity, and bulk viscosity, have been evaluated by means of the path integral centroid molecular dynamics (CMD) calculations. These transport properties have been obtained over the wide temperature range, 14-32 K. Calculated values of the diffusion coefficients and the shear viscosity are in good agreement with the experimental values at all the investigated temperatures. Although a relatively large deviation is found for the thermal conductivity, the calculated values are less than three times the amount of the experimental values at any temperature. On the other hand, the classical molecular dynamics has led all the transport properties to much larger deviation. For the bulk viscosity of liquid p-H(2), which was never known from experiments, the present CMD has given a clear temperature dependence. In addition, from the comparison based on the principle of corresponding states, it has been shown that the marked deviation of the transport properties of liquid p-H(2) from the feature which is expected from the molecular parameters is due to the quantum effect.  相似文献   

8.
The static dielectric constants, ε(s), of ice-Ih and liquid water were calculated using density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the projector-augmented-wave (PAW) approach. Proton disordered ice configurations and uncorrelated liquid configurations were sampled with the electrostatic switching method using force fields specially designed to facilitate the ab initio free energy perturbation calculations. Our results indicate that PAW-PBE underestimates the ε(s) of both ice-Ih and liquid water but predicts the ratio of ice and water ε(s) in good agreement with experimental measurements. PAW-PBE gives average water dipole moments of 2.50 D in ice-Ih and 2.48 D in the liquid. Our results show that the fixed-charge water models developed by adaptive force matching can reproduce the PAW-PBE dipole moments with an error of approximately 5%. The ice and liquid models created in this work have polarizabilities of 1.32 ?(3) and 1.30 ?(3), respectively, along the HOH bisector direction.  相似文献   

9.
We compute thermal transport coefficients for liquid and glassy water in terms of the vibrations of the quenched liquid. The thermal conductivity and thermal diffusivity are computed for H(2)O and D(2)O at densities from 0.93 to 1.2 g cm(-3). The computed thermal diffusivity of liquid water is in reasonable agreement with measured values and is found to increase with increasing temperature due largely to the thermal accessibility of delocalized librational modes. The influence of structure and density on the thermal conductivity of amorphous ices is investigated. The calculations reveal that density alone is unable to explain the measured thermal conductivity of amorphous ices, particularly low-density amorphous ices, for which the thermal conductivity decreases with increasing temperature near 100 K. To investigate the influence of structure on thermal transport in amorphous ices we have computed the thermal transport coefficients for low-density amorphous ices prepared in two different ways, one formed by quenching the liquid at 0.93 g cm(-3) and the other by distortion of cubic ice at the same density. The computed thermal conductivity of the latter is higher, but the structures of both forms are too disordered for the thermal conductivity to exhibit the unusual variation observed experimentally.  相似文献   

10.
We investigate the impact of the treatment of electrostatic interactions on the heat conduction of liquid water. With this purpose, we report a series of non-equilibrium molecular dynamics computer simulations of the Modified Central Force Model of water. We consider both the Ewald summation approach, which includes the full range of the electrostatic interactions, and the Wolf method, which uses a cutoff to truncate the long range contributions. It is shown that the relaxation of the temperature profiles towards the stationary state solution and the equation of state of the liquid are not affected by the treatment of the electrostatic interactions. However, the truncation of the interactions results in lower internal energy fluxes as well as lower thermal conductivities. We also find that the anomalous increase of the thermal conductivity of water with temperature is reproduced by the different methods considered in this work, showing that this physical behavior is independent of the treatment of the long range electrostatic interactions.  相似文献   

11.
Equations have been developed for the electrical and thermal conductivities of dispersions of two different phases of low conductivity in a third, conductive phase. These equations predict the conductivity of the dispersion from the volume fractions and conductivities of the constituent phases. Electrical conductivity measurements on dispersions of three liquid phases, i.e., three-phase emulsions, were made over a wide range of volume fractions of each dispersed phase and used to test the equations. The equations predict accurately dispersion conductivities from the measured volume fractions and conductivities of the constituent phases without any adjustable parameters. The predicted values are in excellent agreement with the measured conductivities of three-phase emulsions in the nonionic amphiphile/oil/water systems. This leads to the determination of three-phase emulsion morphologies. When the ratio Kd of the emulsion-drop conductivity to the continuous phase conductivity is O(10(-1)) 相似文献   

12.
Three different models of AgI are studied by molecular dynamics simulations. The first one is the rigid ion model (RIM) with the effective pair potential of the Vashishta and Rahman form and the parametrization proposed by Shimojo and Kobayashi. The other two are polarizable ion models in which the induced polarization effects have been added to the RIM effective pair potential. In one of them (PIM1), only the anions are assumed to be polarizable by the local electric field. In the other one (PIM2s), the silver polarization is also included, and a short-range overlap-induced polarization opposes the electrically induced dipole moments. This short-range polarization is proved to be necessary to avoid overpolarization when both species are assumed to be polarizable. The three models reproduce the superionic character of alpha-AgI at 573 K and the liquid behavior of molten AgI at 923 K. The averaged spatial distribution of the cations in the alpha-phase obtained for PIM1 appears to be in better agreement with experimental data analysis. The PIM1 also reproduces the structure factor prepeak at about 1 A(-1) observed from neutron diffraction data of molten AgI. The three models retain in the liquid phase the superionic character of alpha-AgI, as the mobility of the cations is significantly larger than that for the anions. The ionic conductivity for the polarizable ion models is in better agreement with experimental data for alpha-AgI and molten AgI.  相似文献   

13.
Monte Carlo and molecular dynamics simulations have been used in order to test the ability of a three center intermolecular potential for carbon dioxide to reproduce literature experimental thermophysical values. In particular, both the shear viscosity under supercritical conditions and along the phase coexistence line, as well as the thermal conductivity under supercritical conditions, have been calculated. Together with the already reported excellent agreement for the phase coexistence densities, the authors find that the agreement with experimental values is, in general, good, except for the thermal conductivity at low density. Although extended versions of the model were employed, which include an explicit account of bending and vibrational degrees of freedom, a significant difference was still found with respect to the reported experimental value.  相似文献   

14.
Water is of fundamental importance for human life and plays an important role in many biological and chemical systems. Although water is the most abundant compound on earth, it is definitely not a simple liquid. It possesses strongly polar hydrogen bonds which are responsible for a striking set of anomalous physical and chemical properties. For more than a century the combined importance and peculiarity of water inspired scientists to construct conceptual models, which in themselves reproduce the observed behavior of the liquid. The exploration of structural and binding properties of small water complexes provides a key for understanding bulk water in its liquid and solid phase and for understanding solvation phenomena. Modern ab initio quantum chemistry methods and high-resolution spectroscopy methods have been extremely successful in describing such structures. Cluster models for liquid water try to mimic the transition from these clusters to bulk water. The important question is: What cluster properties are required to describe liquid-phase behavior?  相似文献   

15.
The thermal conductivities of several nanofluids (dispersions of alumina nanoparticles in ethylene glycol) were measured at temperatures ranging from 298 to 411 K using a liquid metal transient hot wire apparatus. Our measurements span the widest range of temperatures that have been investigated to date for any nanofluid. A maximum in the thermal conductivity versus temperature behavior was observed at all mass fractions of nanoparticles, closely following the behavior of the base fluid (ethylene glycol). Our results confirm that additional temperature contributions inherent in Brownian motion models are not necessary to describe the temperature dependence of the thermal conductivity of nanofluids. Our results also show that the effect of mass or volume fraction of nanoparticles on the thermal conductivity of nanofluids can be correlated using the Hamilton and Crosser or Yu and Choi models with one adjustable parameter (the shape factor in the Hamilton and Crosser model, or the ordered liquid layer thickness in the Yu and Choi model).  相似文献   

16.
We present new Lennard-Jones parameters for Cd2+ and Pb2+ ion-water interactions and describe a general methodology to obtain these parameters for any ion. Our strategy is based on the adjustment of ion parameters to reproduce simultaneously experimental absolute hydration free energy and structural properties, namely, g(r) and coordination numbers, obtained from X-ray liquid scattering and quantum mechanical/molecular mechanical (QM/MM) calculations. The validation of the obtained parameters is made by the calculation of dynamical properties and comparing them with experimental values and theoretical results from the literature. The transferability of parameters is checked by the calculation of thermodynamic, structural, and dynamical properties cited above with four different water models. The results obtained for Cd2+ and Pb2+ show an overall agreement with reference values. The absolute hydration free energy calculated with the TIP3P, SPC/E, SPC, and TIP4P water models presents, respectively, percent differences of 3.8, 3.0, 4.3, and 7.2% for lead(II) and 9.8, 8.4, 10.2, and 14.1% for cadmium(II) when compared with experimental values. Ion-water mean distance and coordination numbers for the first coordination shell are in good agreement with experimental and QM/MM results for both ions. Cd2+ shows a lesser diffusion coefficient compared to that of Pb2+ despite its smaller atomic radius, indicating a more persistent first coordination shell for the cadmium(II) ion, a result confirmed with calculations of the mean residence time of water molecules in the first coordination shell.  相似文献   

17.
We report extensive molecular dynamics simulations of (i) model ions in water at high concentrations as a function of the size and charge of the ion as well as (ii) realistic simulation of Cl- and Br- ions at low concentrations in water at room temperature. We also analyze existing experimental data in light of the results obtained here. The halide ion simulations have been carried out using the interaction potentials of Koneshan et al. (J. Phys. Chem. B 1998, 102, 4193). We compute structural and dynamical properties of ions in water and explore their variation with size and charge of the ion. We find that ions of certain intermediate sizes exhibit a maximum in self-diffusivity in agreement with previous experimental measurements and computer simulations. We analyze molecular dynamics trajectories in light of the previous understanding of the levitation effect (LE) and the recent suggestion that ionic conductivity has its origin in LE (J. Phys. Chem. B 2005, 109, 8120). We report the distribution of void and neck radii that exist amidst water. Our analysis suggests that the ion with maximum self-diffusivity is characterized by a lower activation energy and a single-exponential decay of F(s)(k,t). The behavior of these and other related quantities of the ion with maximum self-diffusivity are characteristic of the anomalous regime of the LE. The simulation results of Br- and Cl- ions in water also yield results in agreement with the predictions of LE. A plot of experimental conductivity data in the literature for alkali ions in water by Kay and Evans (J. Phys. Chem. 1966, 70, 2325) also yields a lower activation energy for the ion with maximum conductivity in excellent agreement with the LE. To the best of our knowledge, none of the existing theories predict a lower activation energy for the ion with maximum conductivity.  相似文献   

18.
The present paper contains inspection of the improved corresponding states principle for transport properties of hydrogen and the binary mixtures of hydrogen with Ne, Ar, Kr and Xe. The set of corresponding states parameters has been defined by a complex numerical analysis of a carefully selected body of experimental data. The obtained correlations for the reduced orientation-averaged diffusion and viscosity collision integrals are restricted to low densities in a temperature range from T = ?/k to the onset of ionization. These equations have been inverted directly to give the isotropic and effective intermolecular potential energy curve for binary mixtures of H2 with Ne, Ar, Kr and Xe corresponding to the viscosity collision integrals. The results are then used to obtain the best Morse-Spline-Van der Waals (MSV) potential parameters. Our inverted potential energies have been compared with experimental intermolecular potentials that were obtained by molecular beam scattering and infrared spectroscopic measurements. In this research, the Chapman–Enskog and Wang Chang-Uhlenbeck-de Boer (WCUB) version of kinetic theory have been used in conjunction with our inverted potential energies to reproduce viscosity, diffusion, thermal conductivity and thermal diffusion factor of binary mixtures of H2 with Ne, Ar, Kr and Xe in a wide temperature range for equimolar composition. As the deviation plots illustrate, our obtained intermolecular potential energies (on the basis of the algorithm presented in the inversion process) represent the low-density transport properties of binary mixtures of H2 with Ne, Ar, Kr and Xe within their expected experimental uncertainties. Close agreement between the predicted values and the literature results of transport properties demonstrates the predictive power of the inversion scheme.  相似文献   

19.
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the corresponding experimental measurements on water. Our simulations also suggest that the Jagla potential may reproduce features of the HDA-VHDA transformations observed in glassy water upon compression and decompression. Snapshots of the system during the HDA-VHDA and HDA-LDA transformations reveal a clear segregation between LDA and HDA but not between HDA and VHDA, consistent with the possibility that LDA and HDA are separated by a first order transformation as found experimentally, whereas HDA and VHDA are not. Our results demonstrate that a system of particles with simple isotropic pair interactions, a Jagla potential with two characteristic length scales, can present polyamorphism in the glass state as well as reproducing many of the distinguishing properties of liquid water. While most isotropic pair potential models crystallize readily on simulation time scales at the low temperatures investigated here, the Jagla potential is an exception, and is therefore a promising model system for the study of glass phenomenology.  相似文献   

20.
To study the initial chemical events related to the detonation of triacetonetriperoxide (TATP), we have performed a series of molecular dynamics (MD) simulations. In these simulations we used the ReaxFF reactive force field, which we have extended to reproduce the quantum mechanics (QM)-derived relative energies of the reactants, products, intermediates, and transition states related to the TATP unimolecular decomposition. We find excellent agreement between the QM-predicted reaction products and those observed from 100 independent ReaxFF unimolecular MD cookoff simulations. Furthermore, the primary reaction products and average initiation temperature observed in these 100 independent unimolecular cookoff simulations match closely with those observed from a TATP condensed-phase cookoff simulation, indicating that unimolecular decomposition dominates the thermal initiation of the TATP condensed phase. Our simulations demonstrate that thermal initiation of condensed-phase TATP is entropy-driven (rather than enthalpy-driven), since the initial reaction (which mainly leads to the formation of acetone, O(2), and several unstable C(3)H(6)O(2) isomers) is almost energy-neutral. The O(2) generated in the initiation steps is subsequently utilized in exothermic secondary reactions, leading finally to formation of water and a wide range of small hydrocarbons, acids, aldehydes, ketones, ethers, and alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号