共查询到20条相似文献,搜索用时 0 毫秒
1.
The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction. 相似文献
2.
On three-electron bonds and hydrogen bonds in the open-shell complexes [H2X2]+ for X = F, Cl, and Br
The [H2X2]+ (X = Cl, Br) formula could refer to two possible stable structures, namely, the hydrogen-bonded complex and the three-electron-bonded one. In contrary to the results published by other authors, we claim that for the F-type structures the hydrogen-bonded form is the only possible one and the [HFFH]+ complex is an artifact as its wave function is unstable. For all analyzed molecules, the IR anharmonic spectra have been simulated, which enabled a deeper analysis of other authors' published results of IR low-temperature matrix experiments. Topological atoms in molecules and electron localization function investigations have revealed that the nature of the bond in three-electron-bonded structures is similar to the covalent-depleted one in F2 or HOO molecules, but the effect of removing electrons from the bond area is stronger. 相似文献
3.
Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order M?ller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been checked for all studied systems. 相似文献
4.
Li QZ Jing B Li R Liu ZB Li WZ Luan F Cheng JB Gong BA Sun JZ 《Physical chemistry chemical physics : PCCP》2011,13(6):2266-2271
The properties and applications of halogen bonds are dependent greatly on their strength. In this paper, we suggested some measures for enhancing the strength of the halogen bond relative to the hydrogen bond in the H(2)CS-HOX (X = F, Cl, and Br) system by means of quantum chemical calculations. It has been shown that with comparison to H(2)CO, the S electron donor in H(2)CS results in a smaller difference in strength for the Cl halogen bond and the corresponding hydrogen bond, and the Br halogen bond is even stronger than the hydrogen bond. The Li atom in LiHCS and methyl group in MeHCS cause an increase in the strength of halogen bonding and hydrogen bonding, but the former makes the halogen bond stronger and the latter makes the hydrogen bond stronger. In solvents, the halogen bond in the Br system is strong enough to compete with the hydrogen bond. The interaction nature and properties in these complexes have been analyzed with the natural bond orbital theory. 相似文献
5.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones. 相似文献
6.
7.
Martínez A Dolgounitcheva O Zakrzewski VG Ortiz JV 《The journal of physical chemistry. A》2008,112(41):10399-10404
The interaction of L (-) (L = F, Cl, Br, I, Al, Ga and In) with a uracil molecule has been studied with B3LYP density-functional geometry optimizations and electron-propagator calculations of vertical electron detachment energies. Because the extra electron of the anion is localized on L, nonconventional hydrogen bonds are formed. The interactions of halide anions with uracil are similar to the interactions of uracil with Cu (-), Ag (-) and Au (-) that were reported previously. Whereas halide and transition metal anion complexes with uracils are singlets, the anions formed with Al, Ga and In are triplets. Vertical electron detachment energies (VEDEs) are higher for (uracil-L) (-) than the analogous values for isolated L (-) anions. Predicted VEDEs are assigned to Dyson orbitals that may be localized on L (-) or uracil. 相似文献
8.
Ab initio calculations were carried out for the reactions of silane and halosilanes (SiH3X, X=H, Cl, Br, I) with HCN. Geometries of the reactants, transition states, intermediates and products were optimized at HF, MP2, and B3LYP levels of theory using the 6-31G(d) and 6-31G(d,p) basis sets. Energies were also obtained using G3MP2 and G3B3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. It was found that HCN can react with silane and halosilanes via three different mechanisms. One involves HX elimination by a one-step pathway producing SiH3CN. The second mechanism consists of H2 elimination, producing SiH2XCN via a one-step pathway or three multiple-step pathways. The third mechanism involves dissociation of SiH3X to various products, which can then react with HCN. Activation energies, enthalpies, and free energies of activation along with the thermodynamic properties (DeltaE, DeltaH, and DeltaG) of each reaction pathway were calculated. The reaction of SiH3X with HCN produce different products depending on substituent X. We have found that the standard 6-31G(d) bromine basis set gave results which were in better agreement with the G3MP2 results than for the Binning-Curtiss basis set. Computed heats of formation (DeltaHf) for SiH3CN, SiH3NC, SiH2ClCN, SiH2BrCN, SiH2ICN, SiHCl, SiHBr, and SiHI were found to be 133.5, 150.8, -34.4, 23.6, 102.4, 48.7, 127.1, and 179.8 kJ mol-1, respectively. From enthalpies calculated at G3MP2, we predict that the DeltaHf for SiH2 to be 262.8 kJ mol-1 compared to the experimental value of 273.8+/-4.2 kJ mol-1. 相似文献
9.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}. 相似文献
10.
The 1H-NMR spectra of the complexes trans-[PtX2(C2H4)(Him)] (X = Cl or Br, Him = imidazole) are discussed. Variable temperature spectra are used to monitor the exchange processes which occur in acetone-d6 solution. It is found, contrary to previous work, that intermolecular exchange occurs for both the chloro- and bromo- complexes. In addition, it is also found that changing the solvent has a marked effect on the rate of exchange. Using an iterative simulation program and assuming intermolecular exchange, the rate constants for the exchange process are determined by band shape analysis, and the enthalpy and entropy of activation are calculated. 相似文献
11.
Theoretical investigation of the weakly dihydrogen bonded complexes FArCCH...HBeX (X = H, F, Cl, Br)
An ab initio computational study of the properties of four linear dihydrogen-bonded complexes formed between the first compound with an Ar-C chemical bond (FArCCH) and HBeX (X = H, F, Cl, and Br) molecules was undertaken at the MP2/6-311++G(2d,2p) level of theory. The calculated complexation energy at MP2 and G2(MP2) levels decreases in the order HBeH...HCCArF > BrBeH...HCCArF > ClBeH...HCCArF > FBeH...HCCArF. The intermolecular stretching frequency, and shifts within the monomers, are compared with the energetic strength of complexation. 相似文献
12.
Structures of protonated alane-Lewis base donor-acceptor complexes H2X2AlNHn(CH3)(3-n)+ (X = F, Cl, and Br; n = 0-3) as well as their neutral parents were investigated. All the monocations H2X2AlNHn(CH3)(3-n)+ are Al-H protonated involving hypercoordinated alane with a three-center two-electron bond and adopt the C(s) symmetry arrangement. The energetic results show that the protonated alane-Lewis complexes are more stable than the neutral ones. They also show that this stability decreases on descending in the corresponding periodic table column from fluorine to bromine atoms. The calculated protonation energies of HX2AlNHn(CH3)(3-n) to form H2X2AlNHn(CH3)(3-n)+ were found to be highly exothermic. The possible dissociation of the cations H2X2AlNHn(CH3)(3-n)+ into X2AlNHn(CH3)(3-n)+ and molecular H2 is calculated to be endothermic. 相似文献
13.
Rao S Ganesamoorthy C Mobin SM Balakrishna MS 《Dalton transactions (Cambridge, England : 2003)》2011,40(22):5841-5843
A novel dodecachlorohexaphosphane, 1,3,5-C(6)H(3)[p-C(6)H(4)N(PCl(2))(2)](3) (1) was synthesized by reacting 1,3,5-tris(4'-anilino)benzene with phosphorus trichloride. Fluorination of 1 with SbF(3) produces 1,3,5-C(6)H(3)[p-C(6)H(4)N(PF(2))(2)](3) (2). The derivatization of chlorohexaphosphane with an aryloxy substituent and its palladium(II) and platinum(II) complexes are also described. 相似文献
14.
Self Consistent Field calculations, using TZ+2P basis sets, are reported on four hydrogen-bonded complexes. Vibrational frequencies, rotational constants, infrared and raman intensities are compared with available experimental data. The basis set superposition error is shown not to be important for the calculation of these properties with this basis set. 相似文献
15.
Pavlyuk A. V. Davydov V. N. Mys'kiv M. G. 《Russian Journal of Coordination Chemistry》2003,29(3):199-202
Crystals of [97N(35)]uBr2 (IV) and [97N(35)][u2Br3] (V) were prepared by ac electrochemical synthesis from uBr2, N-allylquinolinium bromide, on copper electrodes in the ethanol–benzene medium. X-ray diffraction study has shown that crystals IV and V are monoclinic: space group A21/a, a = 13.776(3) Å, b = 14.304(3) Å, c = 13.147(2) Å, = 107.90(1) Å, V = 2465(2) Å3, Z = 8 for IV and space group P21/n, a = 13.881(2) Å, b = 15.446(2) Å, c = 7.111(1) Å, = 104.64(1)°, V = 1475.0(8) Å3, Z = 4 for V. Structures IV and V are built of the N-allylquinolinium cations and different anions i.e., (CuBr2)
n-
n forming infinite chains in IV and peculiar {[CuI
4Br6]2–}
n
arranged in polymeric chains in V. In the latter case, two independent metal atoms have trigonal–pyramidal and trigonal–planar environments. In the structures of both compounds, the C=C bond of the allyl group is not involved in coordination with the Cu(I) atom. 相似文献
16.
Sokolov MN Mihailov MA Peresypkina EV Brylev KA Kitamura N Fedin VP 《Dalton transactions (Cambridge, England : 2003)》2011,40(24):6375-6377
New complexes (Bu(4)N)(2)[Mo(6)X(8)(n-C(3)F(7)COO)(6)] (X = Br, I) display extraordinarily bright long-lived red phosphorescence both in solution and solid phases, with the highest emission quantum yields and the longest emission lifetimes among hexanuclear metal cluster complexes of Mo, W and Re, hitherto reported. 相似文献
17.
Franke O Wiesler BE Lehnert N Näther C Ksenofontov V Neuhausen J Tuczek F 《Inorganic chemistry》2002,41(13):3491-3499
The bonding of N(2) to the five-coordinate complexes [FeX(depe)(2)](+), X = Cl (1a) and Br (1b), has been investigated with the help of X-ray crystallography, spectroscopy, and quantum-chemical calculations. Complexes 1a and 1b are found to have an XP(4) coordination that is intermediate between square-pyramidal and trigonal-bipyramidal. M?ssbauer and optical absorption spectroscopy coupled with angular overlap model (AOM) calculations reveal that 1a and 1b have (3)B(1) ground states deriving from a (xz)(1)(z(2))(1) configuration. The zero-field splitting for this state is found to be 30-35 cm(-1). In contrast, the analogous dinitrogen complexes [FeX(N(2))(depe)(2)](+), X = Cl (2a) and Br (2b), characterized earlier are low-spin (S = 0; Wiesler, B. E.; Lehnert, N.; Tuczek, F.; Neuhausen, J.; Tremel, W. Angew. Chem, Int. Ed. 1998, 37, 815-817). N(2) bonding and release in these systems are thus spin-forbidden. It is shown by density functional theory (DFT) calculations of the chloro complex that the crossing from the singlet state (ground state of 2a) to the triplet state (ground state of 1a) along the Fe-N coordinate occurs at r(C) = 2.4 A. Importantly, this intersystem crossing lowers the enthalpy calculated for N(2) release by 10-18 kcal/mol. The free reaction enthalpy Delta G degrees for this process is calculated to be 4.7 kcal/mol, which explains the thermal instability of N(2) complex 2a with respect to the loss of N(2). The differences in reactivity of analogous trans hydrido systems are discussed. 相似文献
18.
《Journal of Coordination Chemistry》2012,65(11):1315-1325
New rhenium oxo-complexes [ReOX3(OAsPh3)(AsPh3)] (X = Cl and Br) have been synthesised and characterised by X-ray diffraction, IR, electronic and magnetochemical measurements. They were obtained in high yield in reactions between [ReOX3(AsPh3)2] and acetonitrile in air. 相似文献
19.
Antonio E. Mauro Paula S. Haddad Henrique E. Zorel Jr. Regina H. A. Santos Sandra R. Ananias Fabiane R. Martins Laura H. R. Tarrasqui 《Transition Metal Chemistry》2004,29(8):893-899
The compounds [Cu(N3)(NSC)(tmen)]n (1), [Cu(N3)(NCO)(tmen)]n (2) and [Cu(N3)(NCO)(tmen)]2 (3) (tmen=N,N,N′,N′-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms; two from one N,N,N′,N′-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N3)(NCO)(tmen)]2 (3) crystallizes in the monoclinic system (P21). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by μ(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N3)(NSC)(tmen)]n (1) and [Cu(N3)(NCO)(tmen)]n (2) were investigated and the final decomposition products were identified by X-ray powder diagrams. 相似文献
20.
Finze M Bernhardt E Willner H Lehmann CW 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(22):6653-6665
The haloacyltris(trifluoromethyl)borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been synthesized by reacting (CF3)3BCO with either MHal (M=K, Cs; Hal=F) in SO2 or MHal (M=[nBu4N]+, [Et4N]+, [Ph4P]+; Hal=Cl, Br, I) in dichloromethane. Metathesis reactions of the fluoroacyl complex with Me3SiHal (Hal=Cl, Br, I) led to the formation of its higher homologues. The thermal stabilities of the haloacyltris(trifluoromethyl)borates decrease from the fluorine to the iodine derivative. The chemical reactivities decrease in the same order as demonstrated by a series of selected reactions. The new [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br) salts are used as starting materials in the syntheses of novel compounds that contain the (CF3)3B-C fragment. All borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been characterized by multinuclear NMR spectroscopy (11B, 13C, 17O, 19F) and vibrational spectroscopy. [PPh4][(CF3)3BC(O)Br] crystallizes in the monoclinic space group P2/c (no. 13) and the bond parameters are compared with those of (CF3)3BCO and K[(CF3)3BC(O)F]. The interpretation of the spectroscopic and structural data are supported by DFT calculations [B3LYP/6-311+G(d)]. 相似文献