首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DSC measurements were carried out for [Ni(H2O)6](ClO4)2 (sampleH) and [Ni(D2O)6](ClO4)2 (sampleD) in the temperature range 300–380 K. For both compounds two anomalies on the DSC curves were detected. The results for sampleH are compared to those previously obtained using adiabatic calorimetry method. For both compounds studied in this work the high-temperature transition appears at the same temperature while the low-temperature one is shifted towards higher temperatures in sampleD. Disorder connected with H2O or D2O groups is suggested in the intermediate phase between the low- and high-temperature transitions.  相似文献   

2.
3.
高氯酸碳酰肼钴、高氯酸碳酰肼镍快速热分解反应动力学   总被引:2,自引:0,他引:2  
利用温度跃升傅立叶变换红外原位分析技术(T-jump/FTIR)对高氯酸碳酰肼钴和高氯酸碳酰肼镍的快速热分解反应进行了研究. 研究表明, 目标化合物快速热分解逸出的主要气相产物是CO2, H2O, HCN, HNCO和HONO. 借助快速升温过程中Pt金属丝的控制电压变化曲线得到剧烈放热峰的诱导出现时间tx, 利用tx值计算了两种目标化合物的快速热分解动力学参数. 在0.1 MPa氩气气氛, 613~653 K的实验温度范围内, 高氯酸碳酰肼钴的活化能Ea=39.42 kJ•mol−1, lnA=5.93; 在0.1 MPa氩气气氛, 618~678 K的实验温度范围内, 高氯酸碳酰肼镍的活化能Ea=60.44 kJ•mol−1, lnA=9.40.  相似文献   

4.
5.
The reaction of Ni(CH3COO)2(6H2O, 4-hydroxycinnamic acid (Hhca) and 4,4'-bipyri- dine (bipy) ligand in water-solution afforded a mononuclear complex [Ni(H2O)4(4,4'-bipy)2](hca)2 which was characterized by IR, elemental analysis, TGA and single-crystal X-ray diffraction. X-ray crystallography analysis reveals that the complex is of triclinic, space group P with a = 7.0238(14), b = 7.2934(11), c = 17.186(4) (A), α = 87.073(13), β = 84.354(10), γ = 81.961(12)°, V = 866.9(3) (A)3, Z = 1, Dc = 1.474 g/cm3, F(000) = 402, μ = 62.7 mm-1, R = 0.0411, wR = 0.0862 and GOF = 1.048. In solid state, the cation [Ni(H2O)4(4,4'-bpy)2]2+ connects six nearby hca counter anions via O-H…O hydrogen bonds to form an extended 2D lattice framework and the O-H…N hydrogen bonds finally link the 2D layers into an infinite 3D network.  相似文献   

6.
Asymmetric [3+2] cycloaddition of α‐aminoester Schiff bases with substituted olefins is one of the most efficient methods for the preparation of chiral pyrrolidine derivatives in optically pure form. In spite of its potential utility, applicable substrates for this method have been limited to Schiff bases that bear relatively acidic α‐hydrogen atoms. Here we report a chiral silver amide complex for asymmetric [3+2] cycloaddition reactions. A silver complex prepared from silver bis(trimethylsilyl)amide (AgHMDS) and (R)‐DTBM‐SEGPHOS worked well in asymmetric [3+2] cycloaddition reactions of α‐aminoester Schiff bases with several olefins to afford the corresponding pyrrolidine derivatives in high yields with remarkable exo‐ and enantioselectivities. Furthermore, α‐aminophosphonate Schiff bases, which have less acidic α‐hydrogen atoms, also reacted with olefins with high exo‐ and enantioselectivities. The stereoselectivities of the [3+2] cycloadditions with maleate and fumarate suggested that the reaction proceeded by means of a concerted mechanism. An NMR spectroscopic study indicated that complexation of AgHMDS with the bisphosphine ligand was not complete, and that free AgHMDS, which did not show any significant catalytic activity, existed in the catalyst solution. This means that significant ligand acceleration occurred in the current reaction system.  相似文献   

7.
用Ni(ClO4)2合成了高氯酸阴离子和三邻菲啰啉合镍阳离子组成的盐晶体, 晶体结构由X射线衍射确定. 晶体属P21/n空间群, a=0.9388(2) nm, b=3.0139(5) nm, c=1.2974(2) nm, β=111.054(3)º, V=3.426(1) nm3. 采用hyperchem程序包的半经验方法ZINDO/1计算了该配合物的最优化结构, 原子电荷分布很好地佐证了晶体结构的配位环境.  相似文献   

8.
The thermal decompositions of polycrystalline samples of [Ni(NH3)6](NO3)2 were studied by thermogravimetric analysis with simultaneous gaseous products of the decomposition identified by a quadruple mass spectrometer. Two measurements were made for samples placed in alumina crucibles, heated from 303 K up to 773 K in the flow (80 cm3 min?1) of Ar 6.0 and He 5.0, at a constant heating rate of 10 K min?1. Thermal decomposition process undergoes two main stages. First, the deamination of [Ni(NH3)6](NO3)2 to [Ni(NH3)2](NO3)2 occurs in four steps, and 4NH3 molecules per formula unit are liberated. Then, decomposition of survivor [Ni(NH3)2](NO3)2 undergoes directly to the final decomposition products: NiO1+x, N2, O2, nitrogen oxides and H2O, without the formation of a stable Ni(NO3)2, because of the autocatalytic effect of the formed NiO1+x. Obtained results were compared both with those published by us earlier, by Farhadi and Roostaei-Zaniyani later and also with the results published by Rejitha et al. quite recently. In contradiction to these last ones, in the first and second cases agreement between the results was obtained.  相似文献   

9.
10.
11.
A case study on the effect of the employment of two different NHC ligands in complexes [Ni(NHC)2] (NHC=iPr2ImMe 1Me , Mes2Im 2 ) and their behavior towards alkynes is reported. The reaction of a mixture of [Ni2(iPr2ImMe)4(μ-(η2 : η2)-COD)] B / [Ni(iPr2ImMe)2(η4-COD)] B’ or [Ni(Mes2Im)2] 2 , respectively, with alkynes afforded complexes [Ni(NHC)22-alkyne)] (NHC=iPr2ImMe: alkyne=MeC≡CMe 3 , H7C3C≡CC3H7 4 , PhC≡CPh 5 , MeOOCC≡CCOOMe 6 , Me3SiC≡CSiMe3 7 , PhC≡CMe 8 , HC≡CC3H7 9 , HC≡CPh 10 , HC≡C(p-Tol) 11 , HC≡C(4-tBu-C6H4) 12 , HC≡CCOOMe 13 ; NHC=Mes2Im: alkyne=MeC≡CMe 14 , MeOOCC≡CCOOMe 15 , PhC≡CMe 16 , HC≡C(4-tBu-C6H4) 17 , HC≡CCOOMe 18 ). Unusual rearrangement products 11 a and 12 a were identified for the complexes of the terminal alkynes HC≡C(p-Tol) and HC≡C(4-tBu-C6H4), 11 and 12 , which were formed by addition of a C−H bond of one of the NHC N-iPr methyl groups to the C≡C triple bond of the coordinated alkyne. Complex 2 catalyzes the cyclotrimerization of 2-butyne, 4-octyne, diphenylacetylene, dimethyl acetylendicarboxylate, 1-pentyne, phenylacetylene and methyl propiolate at ambient conditions, whereas 1Me is not a good catalyst. The reaction of 2 with 2-butyne was monitored in some detail, which led to a mechanistic proposal for the cyclotrimerization at [Ni(NHC)2]. DFT calculations reveal that the differences between 1M e and 2 for alkyne cyclotrimerization lie in the energy profile of the initiation steps, which is very shallow for 2 , and each step is associated with only a moderate energy change. The higher stability of 3 compared to 14 is attributed to a better electron transfer from the NHC to the metal to the alkyne ligand for the N-alkyl substituted NHC, to enhanced Ni-alkyne backbonding due to a smaller CNHC−Ni−CNHC bite angle, and to less steric repulsion of the smaller NHC iPr2ImMe.  相似文献   

12.
合成了一种新的配合物[Ni(Im)6](CF3COO)2(Im=咪唑),并用X射线衍射、红外光谱和核磁共振氢谱对其结构进行了表征.结果表明,合成的新化合物晶体结构属于单斜晶系,空间群为P21/c;晶胞参数为a=1.080 9(2)nm,b=1.771 8(4)nm,c=0.792 63(16)nm,α=90°,β=96.86(3)°,γ=90°,V=1.507 1(5)nm3,Z=2,Dc=1.528 Mg/m3,μ=0.731 mm-1,F(000)=708.该配合物中心离子Ni(Ⅱ)呈典型的八面体配位构型.  相似文献   

13.
1 INTRODUCTION The rational design and synthesis of new metal- organic frameworks have generated considerable interest in supramolecular chemistry and materials science owing to their intriguing structural diver- sities and potential applications as functional mate- rials[1~6]. Carboxylate-containing ligands have attrac- ted considerable attention because of the various coordination modes of carboxylate group, the ability to form hydrogen bonds and the potential applica- tions as functio…  相似文献   

14.
The rate constant, k, for the homogeneous electron transfer (self-exchange) reaction between the diamagnetic bis(maleonitriledithiolato)nickel dianion, [Ni(mnt) 2] (2-), and the paramagnetic monoanion, [Ni(mnt) 2] (1-), has been determined in acetone and nitromethane (CH 3NO 2) using (13)C NMR line widths at 22 degrees C (mnt = 1,2-S 2C 2(CN) 2). The values of k (2.91 x 10 (6) M (-1) s (-1) in acetone, 5.78 x 10 (6) M (-1) s (-1) in CH 3NO 2) are faster than those for the electron transfer reactions of other Ni(III,II) couples; the structures of [Ni(mnt) 2] (1-) and [Ni(mnt) 2] (2-) allow for a favorable overlap that lowers the free energy of activation. The values of k are consistent with the predictions of Marcus theory. In addition to k, the spin-lattice relaxation time, T 1e, of [Ni(mnt) 2] (1-) is obtained from the NMR line width analysis; the values are consistent with those predicted by spin relaxation theory.  相似文献   

15.
16.
The methods of TG, DTA and DSC were used to study the thermal decompositions of [Ni(H2O)6](NO3)2 and [Ni(D2O)6](NO3)2 in an atmospheric air medium. Intermediates were isolated at 145, 230 and 245°, and were identified by quantitative analysis and IR spectroscopy. The following phase transitions were observed under the conditions of the experiment: melting of the salts, partial dehydration to the tetrahydrate, formation of basic nickel nitrate hydrate stable within a narrow temperature interval, and formation of NiO.
Zusammenfassung Mittels TG, DTA und DSC wurde die thermische Zersetzung von [Ni(H2O)6](NO3)2 und [Ni(D2O)6](NO3)2 in Luft untersucht. Bei Temperaturen von T=145°C, 230°C un 245°C konnten Intermediäre festgestellt werden, welche mittels quantitativer Analyse und IR-Spektroskopie identifiziert wurden. Unter den gegebenen experimentellen Bedingungen wurden folgende Phasenumwandlungen beobachtet: Schmelzen der Salze, partielle Dehydratation zu Tetrahydrat, Bildung von basishem Nickelnitrat-hydrat (stabil innerhalb eines schmalen Temperaturintervalles), schließliche Bildung von NiO.Aus den DSC-Daten wurden die Enthalpien der Phasenumwaldungen berechnet. DTA- und DSC-Daten zeigen, daß die Phasenunwandlungen bei [Ni(H2O)6](NO3)2 bei etwas niedrigeren Temperaturen liegen als bei [Ni(D2O)6](NO3)2.
  相似文献   

17.
Cyclopropyltetrazole (C3tz) and its nickel(II) and copper(II) complexes [M(C3tz)6](BF4)2] were isolated and characterized by elemental analyses, electronic spectroscopy, molar conductances, magnetic susceptibilities and single-crystal X-ray analyses.  相似文献   

18.
Clicking in zeolites : Copper(I)‐exchanged zeolites proved to be practical and efficient catalysts for the cycloaddition of azomethine imines with alkynes, providing a convenient access to N,N‐bicyclic pyrazolidinone derivatives (see scheme). With high regioselectivity, 100 % atom economy, and convenient product isolation, this heterogeneously catalyzed version of the Dorn cycloaddition corresponds to click‐chemistry criteria.

  相似文献   


19.
Ashraf A. Aly 《Tetrahedron》2003,59(10):1739-1747
Syntheses of various classes of unreported heterophanes derived from [2.2]paracyclophane are herein reported. The key to their successful synthesis depends on the photochemical synthesis of pyridazinophane and quinolinophane-2(1H)-one from freshly prepared 4-([2.2]paracyclophanyl)-azo-4′-[2.2]paracyclophane and 4-([2.2]paracyclophanyl)cinnnamanilide, respectively. Reactions of 4-amino-[2.2]paracyclophane with either acetyl- or benzoylacetone afforded condensed products. Then ring closure using polyphosphoric acid (PPA) at 120°C gave, in near quantitative yields, quinolinophanes. Reactions of [2](4,7)-indano-[2]paracyclophane-1-ylidene-propanedinitrile with active methylene compounds afforded fused spiro-pyranoindanoparacyclophane derivatives.  相似文献   

20.
The reaction of the NHC iPr2Im [NHC=N‐heterocyclic carbene, iPr2Im = 1, 3‐bis(isopropyl)imidazolin‐2‐ylidene] with freshly prepared NiBr2 in thf or dme results in the formation of the air stable nickel(II) complex trans‐[Ni(iPr2Im)2Br2] ( 2 ). Complex 2 was structurally characterized. Thermal analysis (DTA/TG) reveals a very high decomposition temperature of 298 °C. Reduction of 2 with sodium or C8K in the presence of the olefins COD (cyclooctadiene) or COE (cyclooctene) affords the highly reactive compounds [Ni2(iPr2Im)4(COD)] ( 1 ) and [Ni(iPr2Im)2(COE)] ( 4 ). Alkylation of 2 with organolithiums leads to the formation of trans‐[Ni(iPr2Im)2(R)2] [R = Me ( 5 ), CH2SiMe3 ( 6 )], whereas the reaction of 2 with LiCp* [Cp* = (η5‐C5(CH3)5)] at 80 °C causes the loss of one NHC ligand and affords [(η5‐C5(CH3)5)Ni(iPr2Im)Br] ( 7 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号