首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对高压脉冲放电破岩电弧等离子体通道长度难以预测的问题,构建了高压脉冲放电破岩综合试验平台,测量了花岗岩-自来水组合介质下电弧等离子体通道发展特性及典型电流、电压参数,提取了不同电极间距和脉冲放电次数下岩石表面形成的破碎区域。基于能量平衡方程建立了岩石中电弧等离子体通道的阻抗模型,采用迭代优化算法获取阻抗模型参数的近似最优解,模型计算结果与试验结果的相对误差小于7%。基于优化参数,利用实测电流电压数据预测了等离子体通道的长度。模型预测的等离子体通道长度与实测值的绝对误差均处于毫米量级,且两者的相对误差小于10%,为高压脉冲放电破岩系统电源-电极负载的匹配设计提供了理论支撑。  相似文献   

2.
为了满足脉冲电场消融的应用需求,解决单极性脉冲电场分布不均匀的问题,研制了一台基于半桥结构的主电路、具有纳秒级前沿的高重复频率双极性亚微秒高压脉冲电源。该脉冲电源由FPGA提供控制信号,经过驱动芯片放大控制信号后,利用光耦隔离驱动多个SiC MOSFET。驱动电路所需元器件较少,信号控制时序简单,可提供负压偏置,使开关管可靠关断,提高了电路的抗电磁干扰能力,使电源能稳定运行。通过电阻负载实验,对比分析了不同栅极电阻对驱动电压的影响,驱动电压上升沿时间越短对应的双极性高压脉冲前沿越快。实验结果表明:所设计的高频双极性脉冲电源在100Ω纯阻性负载上能够稳定产生重复频率双极性纳秒脉冲,输出电压0~±4 kV可调,脉宽0.2~1.0μs可调,正负脉冲相间延时0~1 ms可调,上升沿和下降沿60~150 ns之间。该双极性脉冲电源电路设计结构紧凑,能满足应用的参数需求。  相似文献   

3.
李志军  张雅雯  高迎慧  韩静 《强激光与粒子束》2019,31(8):085001-1-085001-5
针对等离子体的应用,基于级联型电压叠加技术研制了一种最高输出电压为20 kV的高压微秒脉冲源,该电源由40个相同的电源模块组成,其单个模块电压等级为500 V,降低了对器件的绝缘耐压要求。电源的输出电压值在0~20 kV之间可调;重复频率在0~10 kHz之间、脉宽在0~30 μs之间可调;该电源的上升沿和下降沿均在1 μs以内。模块化的设计提高了电源的冗余容错能力。将该电源作为产生等离子体的激励源时,其输出的高压脉冲波形稳定,且根据负载对输出高压波形的要求不同,该电源可以方便地进行调节。  相似文献   

4.
多针电极结构是实现大体积水下放电的基础性电极结构,研究其放电基本特性对其他大体积水下放电电极结构的设计具有重要参考意义.本文构建了一个可安装21根针的多针电极,利用四分幅超高速相机研究了单个脉冲放电过程中可能放电的针电极数目以及电极阵列边缘和内侧针电极放电形态的差异;采用COMSOL软件模拟计算了多针电极结构的电场分布,讨论了电场分布对多针电极放电的影响,研究了多针电极结构的放电能量效率.结果发现:在单个脉冲放电过程中, 21根针电极不是同时发生放电的,最大放电针电极数目随电压和针针间距的增大而增加.在同一个脉冲放电过程中,位于电极阵列边缘的针电极相比于位于阵列内侧的针电极产生的流光丝较长且偏离针电极轴线的偏角相对较大,这主要是针电极之间电场相互叠加干扰引起的.针针间距越小,针电极之间电场的相互叠加干扰越大,阵列边缘与内侧电极放电形态的差异越大,放电能量效率越低.  相似文献   

5.
小型高压重复频率微秒脉冲电源及其放电应用   总被引:1,自引:1,他引:0       下载免费PDF全文
针对实验产生等离子体的需求,研制了一种高压微秒脉冲电源,输出电压最大值为30kV,上升沿最小为300ns、脉宽0.5μs。测试结果表明电源的输出特性由负载决定,同时调节输入电压、触发脉宽可以改变电源的输出脉冲。研究了针-针放电负载时,电源重复频率以及针针间隙对于放电模式的影响,并通过研究电源输出随负载的变化来区别不同的放电模式,最后把电源成功应用于介质阻挡放电。  相似文献   

6.
饶俊峰  李成建  李孜  姜松 《强激光与粒子束》2019,31(3):035001-1-035001-5
设计了一款全固态高重频高压脉冲电源,主电路采用以IGBT为主开关的半桥式固态Marx电路,驱动电路采用磁芯隔离带负压偏置的同步驱动方案,并由FPGA提供充放电控制信号和故障诊断、保护。该方案既可实现对多级电容的低阻抗的快速并联充电控制,又可实现截尾功能以加快脉冲后沿获得方波脉冲,且可实现百μs以上的宽脉冲输出,可用来产生高压脉冲电场。此外,该电源还可在突发模式下输出脉冲个数和频率均可调的多个高频脉冲系列。实验表明,该输出电压幅值可高达40 kV,输出峰值电流可达100 A,重频可达30 kHz,上升沿和下降沿均低于100 ns,突发模式下重频可高达200 kHz。所设计的脉冲电源输出参数连续可调,且体积小巧。  相似文献   

7.
大气压氖气介质阻挡放电脉冲等离子射流特性   总被引:3,自引:3,他引:0       下载免费PDF全文
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(5):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

8.
一种可调的高压脉冲发生器   总被引:5,自引:1,他引:4       下载免费PDF全文
 介绍了一种可调的高压脉冲发生器,该发生器主要由储能电容器组、氢闸流管、电压调节器、保护电路、高压变压器等部件组成。储能电容器组的电容量、充电电压和与高压变压器的连接端口可灵活地进行调节,从而使高压脉冲发生器可产生正极性或负极性,脉冲底宽为1.4~4.3μs,脉冲幅度为10~200kV的高压脉冲,脉冲的上升沿在0.4~0.6μs之间。该高压脉冲发生器有较强的带负载能力,外接负载只要大于1.2kΩ就能保证性能的稳定。  相似文献   

9.
LaB6在低压强氮气和氦气中的放电特性   总被引:8,自引:11,他引:8       下载免费PDF全文
研究了LaB6在1~10 Pa氮气和氦气中的直流和脉冲放电特性以及放电过程对电极的影响。结果表明,电极直径为5 mm的LaB6氦气放电管在脉冲工作状态下可以长期稳定放电。在脉冲电压为2.2 kV、脉冲宽度10 ms、频率13.3 Hz下,脉冲峰值放电电流超过120 A。氦气放电管在放电过程中,阴极表面有离子的清洗和活化作用,可以使电极的表面逸出功降低,提高放电管的发射能力和稳定性。LaB6作为气体放电电极具有寿命长、延迟时间短、放电电流大等优点,可用于重复强流脉冲气体放电的高压高速开关器件。  相似文献   

10.
利用上升沿约0.5 s、半高宽约6 s、幅值可达40 kV的微秒脉冲电源和上升沿约150 ns、半高宽约300 ns、幅值可达50 kV的纳秒脉冲电源激励大气压弥散放电,并分别采用刀型和锯齿电极放电。通过电压电流测量和发光图像拍摄,改变施加电压种类、脉冲重复频率、高压电极结构和气隙距离等参数,研究了不同条件下弥散放电特性。实验结果表明:纳秒脉冲电源和微秒脉冲电源均能在大气压空气中激励大面积的弥散放电,弥散放电面积最大达90 cm2;放电的均匀性受脉冲参数与电极形状影响显著,其中刀型电极条件下纳秒脉冲激励的弥散放电均匀性最佳;相同条件下纳秒脉冲弥散放电的瞬时功率大于微秒脉冲弥散放电,最高可达275 kW,而纳秒脉冲弥散放电的能量小于微秒脉冲弥散放电;保持其他条件不变,弥散放电传导电流幅值随着气隙距离的增加而降低,放电强度随着脉冲重复频率的增加而增强,弥散放电的工作电压范围随着脉冲重复频率的增加显著降低。因此在低频、刀型电极结构中易于获得均匀与较大工作电压范围的大气压弥散放电。  相似文献   

11.
姜松  黄利飞  饶俊峰  王永刚  李孜 《强激光与粒子束》2022,34(5):055001-1-055001-7
设计了一种基于Marx电路的方波脉冲电源,该电源采用磁环隔离驱动方案与全桥Marx电路相结合,实现了正极性、负极性和双极性高压方波脉冲的输出,解决了常规脉冲电源只能输出特定极性脉冲的限制。对电路的运行模式经行了理论分析,并搭建了16级实验样机。实验结果表明:在空载条件下,实现了频率1 kHz,幅值10 kV的正极性、负极性及双极性高压方波脉冲输出。其最小脉宽1μs,极性可调。该脉冲电源结构紧凑,可以实现输出电压、脉宽、脉冲极性可调。最后使用该方波脉冲电源驱动平行板介质阻挡放电反应器。结果表明:该方波脉冲电源可以作为介质阻挡放电驱动源。  相似文献   

12.
采用自行研制的μs级重复频率高压单极性脉冲电源,应用于聚四氟乙烯(PTFE)膜表面改性,研究脉冲放电等离子体对PTFE薄膜表面改性的作用规律。测量处理前后PTFE薄膜表面的水接触角,结果显示,在特定的脉冲参数及更严格的对比条件下其平均水接触角从112°下降到85°,PTFE薄膜表面亲水性改善效果非常显著。脉冲电源采用脉宽调制控制方式,通过逆变升压及波形整形,得到脉冲电压幅值0~20kV、重复频率0~20kHz、脉宽5~15μs、上升沿500ns~2μs、下降沿大于20μs的单极性脉冲。  相似文献   

13.
In this study, surface Dielectric Barrier Discharge (DBD) actuators powered by nanosecond pulsed high voltage are investigated. The goal is to experimentally characterize the surface DBD actuators in terms of electrical and geometrical parameters.The actuators are made of two conducting electrodes separated by a thin dielectric (Kapton films) and arranged asymmetrically. The active electrode is connected to a pulsed high voltage power supply (voltage up to ±10 kV, rise and fall times of 50 ns and pulse width of 250 ns) and the second electrode is grounded.The experimental results show that the energy per pulse (normalized by the length of the active electrode) is smaller when one increases the inter-electrode spacing between 1 and 3 mm, the thickness of the dielectric barrier between 120 and 360 μm or the length of the electrodes between 10 and 50 cm, for both applied voltage polarities.Optical characterization of the plasma layer for different electrode gaps has been investigated by using an ICCD camera. Results indicate that the plasma produced by positive and negative rising voltage propagates in a streamer-like regime with numerous and well-distributed channels, for any electrode gap distance. However, the positive and negative falling voltage produces similar discharges only for large electrode gaps. In this case, the plasma layer starts from a corona spot in contact with the active electrode and expands in the direction of the grounded electrode in a plume shape.  相似文献   

14.
焦毅  姜松  王永刚  饶俊峰 《强激光与粒子束》2023,35(5):055002-1-055002-6
随着脉冲功率技术的发展,纳秒脉冲电场被逐渐应用到等离子体水处理、不可逆电穿孔肿瘤消融等技术中。为了满足纳秒脉冲的应用需求,电源需要输出十几kV高压,拥有纳秒窄脉宽和快速的上升沿,同时尽量减小电源体积,降低成本。该纳秒脉冲电源采用电感隔离型Marx发生器结构,电路可以实现模块化叠加,电感隔离可以减少开关数量,抬升充电电压,以获得更高的电压输出。所设计的驱动电路仅需一路控制信号和一个直流供电模块,经功率放大和磁隔离后可同时控制所有放电管,该驱动电路结构简单、成本低、体积小,耐压水平高。所设计的24级电源样机,在50 kΩ阻性负载上,可输出0~14 kV电压,频率0.5~1 kHz,脉宽500 ns。该电源主电路的长宽高尺寸仅为23 cm×10 cm×12 cm。  相似文献   

15.
A compact high-voltage nanosecond generator is described with pulse repetition rate of up to 1000 pps. The generator includes a 30-Ω coaxial forming line charged by a built-in Tesla transformer with high coupling coefficient, and a high voltage (N2) gas gap switch with gas circulating between the electrodes. The maximum forming line charge voltage is 450 kV, the pulse duration is ~4 ns, and its amplitude for a matched load is up to 200 kV. The generator has been applied to create powerful sources of ultrawide-band electromagnetic radiation and nanosecond microwave pulses  相似文献   

16.
采用MOSFET半导体固态开关作为主放电开关取代气体开关、高压二极管替代充电电阻的技术方法,设计了一种基于功率MOSFET固态开关的纳秒级全固态脉冲源。设计的脉冲源主开关级数共5级,每级主开关分别由5只功率MOSFET半导体固态开关器件串联组成,开关通断控制采用脉冲隔离变压器同步驱动方式。在重复频率1 Hz~1 kHz、充电电压4 kV、负载阻抗为1 k条件下,可实现输出幅度大于20 kV、前沿小于10 ns且脉宽大于100 ns的高压快脉冲。通过实验结果验证了所采用的设计原理及方法的可行性,并给出了单次和重复频率(1 kHz)触发信号作用下全固态脉冲源输出的实验结果。  相似文献   

17.
设计了一种基于功率金属氧化物半导体场效应晶体管(MOSFET)为开关的高压脉冲电源。采用自匹配传输线结构线路形式,串联多个以光纤信号隔离触发的MOSFET作为高耐压开关,在传输线的外皮产生2个纳秒脉冲,再用传输线变压器对2个纳秒脉冲进行功率合成,在200 Ω负载上输出了幅度20 kV,重复频率20 kHz,脉冲宽度约40 ns的脉冲。分析脉冲源装置结构,对实验装置建立仿真模型,阐述了输出波形畸变的原因,给出了影响输出脉冲波形特性的因素,为下一步优化波形工作提供了理论参考。  相似文献   

18.
 试验用功率MOSFET驱动氢闸流管,做成幅度可达15kV、前沿小于10ns、抖动低于1ns的高压纳秒级前沿脉冲源。简要介绍了脉冲源的电路结构,着重从氢闸流管储氢器加热电压、阴极加热电压、触发脉冲幅度、前沿和延迟几方面测量分析了其对脉冲源输出特性的影响。  相似文献   

19.
为了研究大气压低温等离子体多路射流阵列的放电特性,设计一个实现7路低温等离子体射流的放电装置,采用单电极放电结构,在开放的大气环境下通入氦气。采用高压窄脉冲重复频率电源激励驱动该放电装置,电源脉冲宽度约230 ns,脉冲上升沿约为120 ns。在重复频率为500 Hz的条件下,通过高速摄影初步发现放电电流脉宽约为110 ns,且无反向放电。试验结果表明:平均射流长度随电压幅值增加而增加,在一定电压幅值时射流长度有达到饱和的趋势,这是由于射流通道尾部有空气进入,电压幅值已不再是主要原因;只有在合适的气体流量值时,才能够获得较长的平均射流长度,这是由于气体流量过大或过小时射流均不足以维持形成的放电通道;此外,中心电极放电射流长度受气体流量影响较大,气体流量在一定值时可以观察到中心电极有较长的射流,射流放电强度较弱,气体流量过大或过小时中心电极几乎无放电,这是由于四周电极更易形成放电射流,削弱了中心电极放电。 ,  相似文献   

20.
MHz重复频率固体调制器实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
 能产生短脉冲、快上升沿、快下降沿、大电流、能工作在MHz重复频率的固体调制器是脉冲功率技术的一个重要发展方向。介绍了功率MOSFET器件组成的固体调制器的原理以及实验结果,该调制器由多个固体开关模块组成,每个固体开关模块由6个并联的MOSFET开关组成以增大输出电流。固体开关模块采用感应叠加的方式得到高的输出电压。设计的调制器有很快的上升时间与下降时间,其输出脉冲宽度可调并且可以工作在2.5 MHz的重复频率下。在51 Ω的纯电阻负载下,由9个叠加模块组成的调制器可以输出6.2 kV的脉冲电压,脉冲前沿为20 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号