首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提出了一种用于轴向输出相对论磁控管中具有TE11辐射模式的紧凑型输出结构。该器件采用6谐振腔结构并工作在模式上, 通过合理设计谐振腔结构与输出圆波导之间过渡结构, 模拟实现了圆TE11模式微波的轴向输出。与传统衍射输出相对论磁控管相比, 本文设计的轴向输出结构, 不仅能在输出波导中获得更加纯净的微波模式, 而且能减小磁控管的径向尺寸, 使得系统更加紧凑化。初步的粒子模拟结果表明:当电压为280 kV、磁场强度为0.5 T时, 该器件的工作频率为4.18 GHz, 输出功率为247.0 MW, 功率转换效率达到21.9%。  相似文献   

2.
设计了一个紧凑型宽带L波段TM01-TE11模式转换器。该转换器使用同轴TEM和矩形TE10模式作为过渡模式,提高了模式转换器的工作带宽,缩小了模式转换器的尺寸,并且模式转换器的输入输出同轴。建立了一个尺寸为φ20.5 cm×55.2 cm的设计模型,并进行了数值模拟。结果表明:该模式转换器工作频率为1.63~2.22 GHz时转换效率超过90%,相对带宽超过30%;在1.72 GHz处转换效率达99.8%;工作频带内反射系数小于-11 dB,最低为-26.3 dB;该模式转换器的功率容量大于1 GW。  相似文献   

3.
王冬  金晓  陈代兵  秦奋  文杰 《强激光与粒子束》2012,24(09):2169-2173
设计了一种适用于窄带高功率微波源系统的紧凑型TEM-TE11模式转换器。该结构首先将同轴波导沿角向分区使微波在各分区内相位传播常数不同,然后将相位传播常数较大的分区进行横向折叠设计以缩短系统轴向长度。分区传播的微波在模式转换器末端相位差达到180时,合成同轴波导中TE11模式。为L波段磁绝缘振荡器设计了模式转换器,并采用数值仿真程序进行计算,在1.31 GHz中心频率上,模式转换器转换效率为95%;在1.23~1.40 GHz频率上,模式转换器效率大于90%,相对带宽13%。将模式转换器应用于磁绝缘振荡器,并测量了天线的定向辐射能力,所得结果与设计一致。  相似文献   

4.
设计了一种适用于窄带高功率微波源系统的紧凑型TEM-TE11模式转换器。该结构首先将同轴波导沿角向分区使微波在各分区内相位传播常数不同,然后将相位传播常数较大的分区进行横向折叠设计以缩短系统轴向长度。分区传播的微波在模式转换器末端相位差达到180时,合成同轴波导中TE11模式。为L波段磁绝缘振荡器设计了模式转换器,并采用数值仿真程序进行计算,在1.31 GHz中心频率上,模式转换器转换效率为95%;在1.23~1.40 GHz频率上,模式转换器效率大于90%,相对带宽13%。将模式转换器应用于磁绝缘振荡器,并测量了天线的定向辐射能力,所得结果与设计一致。  相似文献   

5.
提出了一种在圆波导中添加金属分割片及半边金属管壳的结构以实现圆波导TM01-TE11模式转换。通过金属分割片将圆波导分成两个半圆区域:其中一个半圆区域为空波导,另一半圆区域为填充一定厚度金属管壳的空波导。在S波段对设计的中心频率为2.8 GHz的物理模型进行数值模拟与实验研究,模拟结果表明:在中心频率2.8 GHz转换效率为99.56%,反射率低于0.01;在2.716~2.946 GHz频带内转换效率大于90%,S11小于-10 dB。实验中测试到的S11参数与模拟结果基本一致,证明了该变换器技术方案的可行性和模拟结果的正确性  相似文献   

6.
在传播常数随半径变化的情况下近似分析了两模转换条件,得到了模式转换器的初始结构,然后调用迭代法进行优化,最终能得到结构紧凑、带宽较宽、转换效率高的模式转换器。设计了两周期的Ka波段和一周期的W波段TE01-TE02模式转换器,带宽(转换效率95%以上频带宽度)分别达到2.47,8 GHz。CST仿真结果与耦合波仿真程序计算结果吻合较好,验证了该方法的有效性。  相似文献   

7.
在传播常数随半径变化的情况下近似分析了两模转换条件,得到了模式转换器的初始结构,然后调用迭代法进行优化,最终能得到结构紧凑、带宽较宽、转换效率高的模式转换器。设计了两周期的Ka波段和一周期的W波段TE01-TE02模式转换器,带宽(转换效率95%以上频带宽度)分别达到2.47,8 GHz。CST仿真结果与耦合波仿真程序计算结果吻合较好,验证了该方法的有效性。  相似文献   

8.
 基于圆波导TE11模的模式简并特性和微波在椭圆波导中传输两个正交TE11模式相速不同的性质,研制了一种带有椭圆波导结构的圆波导TE11模圆极化器。该圆极化器通过圆波导到椭圆波导的过渡段,将输入的线极化TE11模式分成两个等幅、正交的TE11模,然后调整椭圆波导长度,使得两个正交的TE11模式的相位差为90°,实现了TE11模式微波线极化到圆极化的转换。利用时域有限差分软件优化设计了该圆极化器,并按照优化的结构尺寸加工了一套实验装置进行了实验测试,测试结果表明:在工作频率9~10 GHz范围内,该圆极化器轴比小于1 dB,驻波比小于1.1,且功率容量大于1.6 GW。  相似文献   

9.
V波段圆波导TE01模式激励器由矩形TE10模式到矩形TE20模式变换器和矩形TE20模式到圆波导TE01模式变换器组成。采用H面(磁面)转弯激励的方式实现矩形TE10模式到矩形TE20模式的变换;根据圆波导TE01模式的场分布特性,引入过模波导实现了矩形TE20到圆波导TE01的变换。计算结果表明设计的激励器转换效率在95%以上;模式纯度在98%以上的相对带宽可达4.2 GHz;其中在43.4 GHz处的最大转换效率为99.08%,纯度为99.20%。  相似文献   

10.
设计了一种矩形波导隔断插板式TM11-TE10模式转换器。其结构是在矩形波导横截面窄边的中部,平行于横截面宽边插入一块金属平板,将其等分为上下两个矩形波导,将TM11模式转换为分别位于上下两个矩形波导内相位相反的TE10模式。然后分别在上下两个矩形波导内,平行于窄边等间距地插入一组金属薄板。TE10模式微波经过轴向长度差为合适值的上下两组插板后,相移差变为180,使原本相位相反的TE10模式转为同向,最后通过阻抗渐变合成单个波导的TE10模式。该模式转换器可与带状电子束高功率微波源共轴,其横向最大尺寸可与带状电子束高功率微波源矩形输出口保持一致,轴向长度较短,结构简单、紧凑。利用有限元算法仿真软件,对该设计方案进行了验证和初步优化设计。初步的设计结果表明:当相对带宽为10%时,TM11至TE10模式的转换效率大于-0.45 dB,可满足带状电子束高功率微波源对输出结构的设计要求。  相似文献   

11.
利用高折射率的金属超材料作为移相器,设计了一种紧凑型高功率微波TEM-TE11模式转换器。通过研究同轴扇形金属栅格超材料的传输特性,得到高折射率的全金属超材料。采用CST Microwave Studio 软件对金属超材料TEM-TE11模式转换器进行了数值模拟,结果显示:该转换器在1.56 GHz附近转换效率大于96%,相对带宽约4%,功率容量不低于2 GW,系统纵向长度仅0.42个波长。将所设计的模式转换器结合L波段磁绝缘线振荡器开展了一体化设计,在器件输出口得到了TE11模高功率微波输出。  相似文献   

12.
 设计了一个紧凑型宽带L波段TM01-TE11模式转换器。该转换器使用同轴TEM和矩形TE10模式作为过渡模式,提高了模式转换器的工作带宽,缩小了模式转换器的尺寸,并且模式转换器的输入输出同轴。建立了一个尺寸为φ20.5 cm×55.2 cm的设计模型,并进行了数值模拟。结果表明:该模式转换器工作频率为1.63~2.22 GHz时转换效率超过90%,相对带宽超过30%;在1.72 GHz处转换效率达99.8%;工作频带内反射系数小于-11 dB,最低为-26.3 dB;该模式转换器的功率容量大于1 GW。  相似文献   

13.
设计了一种结构简单的高功率微波方圆模式转换器,可以实现圆波导TM01模式与矩形波导TE10模式之间的相互转换。转换器工作在C波段,中心频率4.1 GHz,其输入端口和输出端口相互垂直。计算和仿真结果表明:中心频率处该模式转换器的转换效率可达99%,回波损耗小于-20 dB,转换效率大于90%的带宽大于0.2 GHz。转换器整体3维尺寸都只有10 cm左右。  相似文献   

14.
 利用高功率微波源对预设的11种不同尺寸的缝隙做了耦合效应试验,得到了这11种缝隙对试验波段的一般耦合特性。试验结果表明:窄缝的耦合效应有较强的极化特性;从波长与缝隙的长度相对关系对耦合效应的影响来看,波长与缝隙的长度相当时耦合效应最强;在UWB,L,S,X几个波段内,缝隙的宽度越窄,耦合效应越弱;缝隙的深度能明显影响其耦合效应,随缝深的增加,耦合效应逐渐减弱;辐射波脉宽变化对耦合效应基本没有影响。  相似文献   

15.
主要给出了波导型的X波段大功率微波探测器的结构、标定方法和标定结果。该新型大功率微波探测器具有承受微波峰值功率高(可达100 kW),时间响应快(响应时间小于2.0 ns),不需要同步信号,抗干扰能力强等特点。根据不同的需要,可以制作成波导型和同轴型的大功率微波探测器。波导型探测器由热离子二极管、标准波导、滤波器和外电路组成,其工作频率范围为波导的工作频率范围;而同轴型探测器由热离子二极管、同轴波导,滤波器和外电路组成,可以宽带使用。标定结果表明该探测器很适合高功率微波峰值功率测量,尤其是在强电磁干扰环境和高重频微波脉冲条件下的测量,为解决功率测量不准的技术难题提供一种有效的技术手段。  相似文献   

16.
 设计了一种新型L波段慢波结构式圆波导TM01-TE11模式转换器,该转换器的尺寸为φ15.0 cm×40.8 cm,通过金属分割片将圆波导分成两个180°区域并在其中一个区域内设置半环形慢波结构。当TM01入射时,在两个区域内激励起扇形波导TE11模式,由于慢波结构的存在,该模式在两个区域内的传播常数不一样。适当调节慢波结构的参数,可使两个区域内传输的扇形TE11模式在金属分割片尾部相位相差180°,这两个扇形TE11模式耦合成为圆波导TE11模式输出,实现模式转换。建立数值模型并进行了模拟,结果表明在工作频率1.8 GHz处转换效率96%,反射率低于0.04,功率容量超过1.7 GW。  相似文献   

17.
紧凑型Marx发生器高功率微波源研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
紧凑型Marx发生器不但体积小,重量轻,而且能量效率高,能以一定的重复频率运行,在窄带、宽带和超宽带高功率微波源中获得了广泛的应用。这种类型的高功率微波源是近几年来国内外的研究热点和重要发展方向。对国内外基于紧凑型Marx发生器的高功率微波源的研究进展进行了系统介绍,评述其输出参数和结构特点,并探讨其发展趋势,为正确把握基于紧凑型Marx发生器的高功率微波源的发展动态、科学探索其技术路线提供参考和依据。  相似文献   

18.
吴洋  许州  徐勇  金晓  常安碧  李正红  黄华  刘忠  罗雄  马乔生  唐传祥 《物理学报》2011,60(4):44102-044102
在器件设计上,针对低功率驱动的高功率微波放大器或高增益放大器中的高次模激励和自激振荡问题,采取了降低电子束同器件前端结构耦合等措施,来保证器件在工作区间完全处于放大状态,通过PIC模拟,设计了低功率驱动的S波段高功率微波放大器(电子束:流强7.5 kA,电子能量750 kV),注入微波6.8 kW时,模拟微波输出功率1.7 GW,增益53.9 dB.在Sinus加速器平台上开展了相应的实验研究: 注入微波62 kW时,微波输出功率达到2.04 GW(电子束:流强8 kA,电子能量800 kV), 输出频率 关键词: 高功率微波 微波器件 高增益 模式控制  相似文献   

19.
设计了一种新型L波段慢波结构式圆波导TM01-TE11模式转换器,该转换器的尺寸为φ15.0 cm×40.8 cm,通过金属分割片将圆波导分成两个180°区域并在其中一个区域内设置半环形慢波结构。当TM01入射时,在两个区域内激励起扇形波导TE11模式,由于慢波结构的存在,该模式在两个区域内的传播常数不一样。适当调节慢波结构的参数,可使两个区域内传输的扇形TE11模式在金属分割片尾部相位相差180°,这两个扇形TE11模式耦合成为圆波导TE11模式输出,实现模式转换。建立数值模型并进行了模拟,结果表明在工作频率1.8 GHz处转换效率96%,反射率低于0.04,功率容量超过1.7 GW。  相似文献   

20.
设计并分析了TE01斜接弯头结构,该结构由两段相同且垂直的模式变换段及与模式变换段呈45°斜接的金属镜面组成。整个结构等效于两个模式变换段对接,但中间存在间距为波导直径的缝隙。模式变换段将纯TE01模式转换为TE01和TE02的混合模式,该混合模式在缝隙中传播时电场呈现对称分布,从而降低了模式转换损耗,提高了传输效率。对设计的Ka波段TE01斜接弯头结构的理论仿真和加工实测结果表明:中心频点转换效率在98%以上,在2 GHz带宽内传输效率95%以上,插损小于0.2 dB,驻波小于1.2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号