首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
数值模拟研究了高速气流作用下激光加热金属平板温度场。流体控制方程为三维雷诺平均Navier-Stokes方程,固体控制方程为能量方程,湍流粘性系数求解使用k-ε两方程模型。采用流固耦合计算方法,使用两相流模型模拟气流对烧蚀物的剥蚀,较完整地模拟了激光辐照金属材料的物理变化过程,计算得到了不同气流速度下金属平板的温度分布以及烧蚀形貌。分别使用两相流方法和动网格方法对高速气流作用下激光对金属板的烧蚀效应进行了计算,结果表明,两相流方法与动网格方法都能较好地模拟高速气流作用下激光加热金属平板的温度响应,由于两相流方法能够较全面地模拟对流换热、熔化与凝固过程以及金属液体在气流冲刷下的动力学过程,因此能获得比动网格方法更为合理的物理图像。  相似文献   

2.
采用数值计算设计了Ti-Cu-W材料体系Pillow飞片,实现金属铋样品的冲击加载和准等熵加载,并通过实验研究铋的冲击熔化再凝固这一复杂的物理过程,实验获得的速度波剖面结果与数值模拟结果基本一致。还建立了金属铋的包含5个固相和1个液相的完全物态方程,计算相图的三相点以及高压区的Hugoniot线与实验数据吻合较好,计算还获得了冲击加载再凝固实验中的温度信息和相变信息。通过计算分析和对实验数据的解读,认为Ti-Cu-W材料体系Pillow飞片加载可以用于铋的冲击熔化再凝固复杂物理过程研究,为实验探索研究建立了适用的研究方法和有效的技术手段。  相似文献   

3.
结合蜂窝结构传热机制与复合材料烧蚀机制,研究了蜂窝夹芯复合材料结构在激光辐照条件下的热响应。针对典型蜂窝单元,建立了细观导热及烧蚀理论模型。基于有限元软件热分析模块和二次开发程序构建了蜂窝夹芯结构的高温传热数值模型,考虑了热物性参数的非线性变化、树脂热解和纤维烧蚀过程。采用连续激光作为加载热源,设计并开展了大气环境中蜂窝结构的热烧蚀实验,获得了蜂窝结构的动态烧蚀特征。结果表明,蜂窝夹芯复合材料结构在激光功率密度为102 W/cm2量级时具有良好的抗烧蚀能力,数值模型能够较为准确地模拟激光加载蜂窝结构过程中的烧蚀温度和树脂、纤维的烧蚀情况,并获得较为真实的烧蚀形貌。  相似文献   

4.
为了研究气流条件下强激光对金属靶的熔蚀效应,采用有限体积方法建立了数值模型,并开发了三维Fortran计算程序。综合考虑强激光与材料耦合规律、光束能量空间分布、材料高温热物理性能以及熔蚀界面移动等关键影响因素,模拟了激光辐照下金属靶板升温、熔化和剥蚀的复杂物理过程。最后,将计算结果与试验数据进行了比较,验证了计算模型和程序的有效性。结果表明,计算模型能够反映强激光熔蚀金属平板的基本规律,熔蚀深度和后表面温度计算值与试验吻合较好,并且自编计算程序简单高效。  相似文献   

5.
由于炸药具有热传导系数小、对温度极其敏感的特点,在使用多脉冲飞秒激光对其进行持续加工时,极有可能在炸药内形成热累积,从而导致点火、燃烧等危险事件的发生。为了降低激光加工材料过程中的热效应,人们普遍采取在材料加工表面施加气流的方法。为了研究加载气流条件下,炸药装药在飞秒激光作用下产生的烧蚀产物的运动规律以及炸药装药内部的温度变化,建立了加载气流条件下飞秒激光加工炸药装药过程的二维流固耦合计算模型,对在单侧、双侧不同入射角度的亚音速气流作用下,飞秒激光加工奥克托今(HMX)炸药装药的过程进行了数值模拟计算。计算结果表明:单侧气流会在炸药加工表面形成漩涡流,导致烧蚀气体产物在炸药表面做旋转运动,加重了烧蚀产物对炸药的热影响;双侧气流会在远离炸药加工表面的地方形成较大的漩涡流,从而使烧蚀气体产物迅速离开炸药加工表面,有效降低了炸药的温度,提高了飞秒激光加工炸药装药过程的安全性。  相似文献   

6.
悬浮RDX炸药粉尘爆轰的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
用两相流模型对悬浮RDX炸药粉尘爆轰波进行了数值模拟。RDX炸药颗粒在爆轰波阵面后的高温高速气流中加速并升温,颗粒表面发生熔化。参考液滴在高速气流作用下剥离的效应,假设炸药熔化部分在高速气流的作用下发生剥离,破碎成极小的颗粒,瞬时发生分解反应,释放出能量支持爆轰波传播。数值模拟了在不同粒径和浓度的悬浮RDX炸药粉尘中爆轰波的发展与传播过程,得到了爆轰波流场中气-固两相的物理量分布,并确定了爆轰波参数。在较低的RDX粉尘浓度条件下,爆轰波阵面压力的峰值曲线出现振荡。当RDX粉尘浓度在80~150 g/m3时,数值模拟得到的爆轰波阵面压力峰值曲线的振荡是规则的;当RDX粉尘浓度为70 g/m3时,爆轰波阵面压力峰值曲线出现不规则振荡。  相似文献   

7.
激光加热金属板流固耦合数值模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
 数值模拟研究了气流和激光辐照双重作用下的金属平板温度场。流体控制方程为3维雷诺平均N-S方程,固体控制方程为能量方程,湍流粘性系数求解使用k-ε两方程模型。采用流固耦合计算方法,使用动网格模型模拟气流的“冲刷效应”,较完整地模拟了激光辐照金属材料的物理变化过程,计算得到金属平板的温度分布及流场分布。结果表明:在较低气流速度及激光功率下,气流的冷却效应占主导地位;当气流速度和激光功率上升到一定程度后,气流的“冲刷效应”和冷却效应共同决定金属平板的温度分布。  相似文献   

8.
采用双温度模型,对飞秒单脉冲激光照射下金膜的烧蚀过程进行了研究,通过界面能量平衡方程成核动力学方程和气体动力学定律对烧蚀过程中的固-液以及气-液界面进行了追踪。对考虑非傅里叶效应的双重双曲线两步(DHTS)模型和抛物线两步(PTS)模型的模拟结果进行了对比研究,并分析了激光和金属薄膜参数对烧蚀过程的影响。结果表明:对于飞秒激光烧蚀过程,DHTS模型的模拟结果比PTS模型的模拟结果更接近于实验数据,相同条件下DHTS模型得到的熔化以及烧蚀深度会明显高于PTS模型得到的结果;激光能量密度越大,激光脉冲宽度越小激光烧蚀的深度越深,而薄膜越厚烧蚀越弱。  相似文献   

9.
通过表面形貌观察、温度场分析,研究了切向空气气流、切向氮气气流、自然对流3种环境下氟化氘(DF)激光对45#钢靶的辐照效应,结果表明:切向空气气流环境下,钢靶烧蚀效果最显著,靶板后表面中心温升最高;切向氮气气流环境下,钢靶有一定的烧蚀,但温升最低;自然对流环境下,烧蚀效果最差。实验结果表明:切向气流可移除部分熔化物,特别在切向空气气流环境下剧烈的氧化反应可促进钢靶温度升高,显著增强激光对钢靶的烧蚀,停止激光辐照后切向气流的冷却效应起主要作用。根据实际物理问题建立了相应的数值计算模型,模拟了不同气流环境下激光对钢靶的辐照效应,其中,利用"生死单元"的方法,模拟了切向空气气流环境下激光对钢靶的烧蚀,并考虑了氧化放热的影响。模拟结果与实验结果基本相符,解释了气流在激光辐照效应中的作用。  相似文献   

10.
采用考虑颗粒碰撞的欧拉一拉格朗日数值模拟方法(DPM),对水平突扩圆管中液固两相流固体颗粒的碰撞过程进行了数值计算.在模型中,对液相采用欧拉法建立控制方程,对离散颗粒采用拉格朗日方法模拟.采用硬球模型描述颗粒间的碰撞作用.计算结果表明,该模型可以真实地模拟液固两相流中固体颗粒运动的动态变化过程以及颗粒的非均匀分布特征,从单颗粒层次上提供颗粒的运动信息,这有助于深入研究液固两相流中固体颗粒的运动规律.  相似文献   

11.
复合相变材料应用于电子散热的热分析   总被引:1,自引:0,他引:1  
基于显热容法,建立复合相变材料应用于电子散热的传热模型及相应的数值计算方法,利用Icepak软件进行数值计算,分析了温度场及流场分布。模拟结果与实验测量值相接近,其最大相对误差为8.8%,说明所采用的数值模型及相关简化处理正确。借助热分析方法可以真实地模拟系统的热状况,从而为电子设备的热设计和热管理提供依据。  相似文献   

12.
The phenomena of melting and dendritic fragmentation are captured by using an in-situ device during the ultrasound-assisted solidification of a succinonitrile-acetone (SCN-ACE) alloy. The experimental results show that the dendrite arms detach from primary trunk due to the melting of the solid phase, which is caused by a moving ultrasound cavitation bubble. To quantify the interactions between the ultrasound cavitation bubble and the solidification front, a coupled lattice Boltzmann (LB) model is developed for describing the fields of temperature, flow, and solid fraction, and their interactions. The multi-relaxation-time (MRT) scheme is applied in the LB model to calculate the liquid-gas flow field, while the Bhatnagar–Gross–Krook (BGK) equation is executed to simulate the evolution of temperature. The kinetics of solidification and melting are calculated according to the lever rule based on the SCN-ACE phase diagram. After the validation of the LB model by an analytical model, the morphologies of the cavitation bubble and solidification front are simulated. It is revealed that the solidification interface melts due to the increase of the temperature nearby the cavitation bubble in ultrasonic field. The simulated morphologies of the cavitation bubble and solidification front are compared well with the experimental micrograph. Quantitative investigations are carried out for analyzing the melting rate of the solidification front under different conditions. The simulated data obtained from LB modeling and theoretical predictions reasonably accord with the experimental results, demonstrating that the larger the ultrasonic intensity, the faster the melting rate. The present study not only reveals the evolution of the solidification front shape caused by the cavitation bubbles, which is invisible in the ultrasound-assisted solidification process of practical alloys, but also reproduces the complex interactions among the temperature field, acoustic streaming, and multi-phase flows.  相似文献   

13.
The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.  相似文献   

14.
A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.  相似文献   

15.
Laser‐supported processes can be used to modify the electrical and thermal properties of ceramic substrates locally. These processes are characterized by a strong thermal interaction between the laser beam and the ceramic surface that leads to localized melting. During the dynamic melting process an additive material is injected into the melt pool in order to modify the physical properties. The heat and mass transfer during this dynamic melting and solidification process has been studied numerically in order to identify the dominating process parameters. Simulation tools based on a finite‐volume method have been developed to describe the heat transfer, fluid flow and the phase change during the melting and solidification of the ceramic. The results of the calculation have been validated against experimental results.  相似文献   

16.
陈海楠  孙东科  戴挺  朱鸣芳 《物理学报》2013,62(12):120502-120502
建立了二维双组分两相流的大密度比格子玻尔兹曼方法 (lattice Boltzmann method, LBM)模型. 该模型基于改进的Shan-Chen伪势多相流LBM模型, 结合采用不同时间步长的方法, 实现密度比达800以上的气液两相流模拟. 为了对模型进行验证, 模拟了在不同气液相互作用系数和密度比条件下气泡内外压力差与其半径之间的关系, 其结果满足Laplace定律. 将所建立的大密度比LBM与介观尺度的元胞自动机(cellular automaton, CA)和有限差分法(FDM)相耦合, 用LBM模拟气液两相流, 用CA方法模拟固相生长, 用有限差分法模拟温度场, 采用LBM-CA-FDM耦合模型对定向凝固过程中凝固前沿的气泡与液-固界面之间的相互作用进行模拟研究. 结果表明, 绝热气泡的存在影响了温度场分布, 使得凝固前沿接近气泡时, 液-固界面凸起, 在不同的固相生长速度条件下, 出现凝固前沿淹没气泡或气泡脱离凝固前沿的不同情况, 模拟结果与实验结果符合良好. 关键词: 格子玻尔兹曼方法 元胞自动机 凝固 气泡  相似文献   

17.
Pulsed laser melting of ion implantation-amorphized silicon layers, and the subsequent solidification of undercooled liquid silicon, have been studied experimentally and theoretically. Measurements of the time of the onset of melting of amorphous silicon layers, during an incident laser pulse, have been combined with measurements of the duration of melting, and with modified melting model calculations to demonstrate that the thermal conductivity, Ka, of amorphous silicon is very low (Ka0.02 W/cm K). Ka is also found to be the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation; the latent heat of fusion and melting temperature of amorphous silicon are relatively unimportant. Transmission electron microscopy indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model has been constructed to simulate this effect and is presented. Nucleation of crystalline silicon apparently occurs at a nucleation temperature, Tn, that is higher than the temperature, Ta, of the liquid-to-amorphous phase transition. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with experimentally observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. It is pointed out that the occurrence of bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or ultraviolet nanosecond laser pulses) cannot be explained by purely thermodynamic considerations.  相似文献   

18.
Infrared multiwavelength pyrometry: application to metals. The aim of this work is the temperature measurement of welded metallic materials in order to study the cooling kinetic in solid phase during the welding. To take the constraints of the process into account, a fast noncontract method is indispensable. Moreover, the emissive properties of the metal evolve during the process and cannot be known a priori. The multiwavelength pyrometry can solve this problem : first the thermal emission is simultaneously measured at N wavelengths, then a parameter identification technique using a physical or an empirical model for the emissivity leads to the identification of the temperature and the spectral emissivity. We adapted this method to a temperature range between 500 K and the melting/solidification temperature of the metallic material. Various metallic samples have been studied (steels, titanium, aluminium). For each sample, the results present a relative deviation between the identified and experimental (thermocouple) temperatures of less than 2 %, for the more adapted theoretical models. This study does not lead to objective rules for the choice of the emissivity model. On the other hand, for some groups of materials (austenitic stainless steels, and carbon steels), it has been possible to select one or several models giving suitable results for similar samples.  相似文献   

19.
Thermal performance of a latent heat storage unit is evaluated experimentally. The latent heat thermal energy storage system analyzed in this work is a shell-and-tube type of heat exchanger using paraffin wax (melting point between 58°C and 60°C) as the phase change material. The temperature distribution in the phase change material is measured with time. The influence of mass flow rate and inlet temperature of the heat transfer fluid on heat fraction is examined for both the melting and solidification processes. The mass flow rate of heat transfer fluid (water) is varied in the range of 0.0167 kg/s to 0.0833 kg/s (1 kg/min to 5 kg/min), and the fluid inlet temperature is varied between 75°C and 85°C. The experimental results indicate that the total melting time of the phase change material increases as the mass flow rate and inlet temperature of heat transfer fluid decrease. The fluid inlet temperature influences the heat fraction considerably as compared to the mass flow rate of heat transfer fluid during the melting process of the phase change material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号