首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a high-pressure system built to load rare gases (He, Ar, Ne) in various types of diamond anvil cells, at room temperature. These gases are used as pressure transmitting media to obtain the best hydrostatic compression conditions in high-pressure experiments. Optical windows allow control of the loading process. The loading success rate is close to 100% and the initial pressures in the diamond anvil cell are in between 0.2 and 1?GPa. This system can easily be adapted for loading of various gaseous samples, including gas mixtures, which generally cannot be loaded by cryogenic methods.  相似文献   

2.
ABSTRACT

A simple modified Bridgman design for large volume pressure anvils usable in the Paris-Edinburgh (PE) press has been demonstrated at Oak Ridge National Laboratory Spallation Neutron Source. The design shows advantages over the toroidal anvils typically used in the PE press, mainly rapid compression/decompression rates, complete absence of blow-outs upon drastic phase transitions, simplified cooling, high reliability, and relative low loads (~40 tons) corresponding to relatively high pressures (~20?GPa). It also shows advantages over existing large-volume diamond cells as sample volumes of ~2–3?mm3 can be easily and rapidly synthesized. The anvils thus allow sample sizes sufficient for in situ neutron diffraction as well as rapid synthesis of adequate amounts of new materials for ex situ analysis via total neutron scattering and neutron spectroscopy.  相似文献   

3.
Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two-stage diamond anvil with 300?µm culet and with a CVD diamond second stage of 50?µm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86?GPa. The micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86?GPa.  相似文献   

4.
This Letter describes the shock-induced amorphization of single-crystal Si bombarded by nanodroplets. At impact velocities of several kilometers per second, the projectiles trigger strong compression pulses lasting tens of picoseconds. The phase transition, confirmed via transmission electron microscopy and electron backscatter diffraction, takes place when the projectile's stagnation pressure is approximately 15?GPa. We speculate that the amorphization results either from the decompression of the β-Sn phase or during the compression of the diamond phase.  相似文献   

5.
The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys.?Rev.?Lett.?80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20?GPa, but the strength increases drastically with applied pressure, such that at 55?GPa, the shear strength exceeded 2.7?GPa. The elastic anisotropy at 55?GPa was four times higher than the extrapolated value from 30?GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures.  相似文献   

6.
The structure of GeO(2) glass was investigated at pressures up to 17.5(5)?GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ??5?GPa, is associated with a reorganization of GeO(4) units. The second, extending over the range from ??5 to 10?GPa, corresponds to a regime where GeO(4) units are replaced predominantly by GeO(5) units. In the third, as the pressure increases beyond ~10?GPa, appreciable concentrations of GeO(6) units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30?GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO(2) occur at similar dimensionless number densities to those found for SiO(2), indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24?GPa where SiO(4) units are replaced predominantly by SiO(5) units, and a regime beyond ~24?GPa where appreciable concentrations of SiO(6) units begin to form.  相似文献   

7.
ABSTRACT

Current anvil designs and problems associated with various efforts to generate static high pressures beyond the limit of conventional diamond anvil cells (DACs) (~400?GPa) are reviewed. Pressures of up to 1?TPa have been reported by one research group using the double-stage DAC (ds-DAC) technique, but no other research group has successfully reproduced this high pressure result. Some research groups have used toroidal anvils, achieving pressures of >400?GPa. We have conducted numerous ds-DAC experiments and investigated the problems associated with such experiments. They include problems associated with various pressure scales in the multi-megabar region, difficulties in obtaining reliable X-ray diffraction patterns from micron-sized samples, and physical property measurements of tiny materials that may be harder than diamond. Each of these problems is discussed, following the summary of various experiments.  相似文献   

8.
ABSTRACT

The phase transitions and equation of state measurements were carried out on rare earth metal Holmium (Ho) to 282?GPa using toroidal diamond anvils thereby doubling the pressure range to which it has been studied previously. The first set of experiment employed standard beveled diamond anvils utilizing copper as an x-ray pressure standard to 217?GPa. The second set of experiment employed toroidal diamond anvils utilizing platinum as an x-ray pressure standard to 282?GPa. The recently proposed 16-atom orthorhombic structure (oF16) appeared to be stable between 103 and 282?GPa. The scaled axial ratio (c/a) shows a narrow range of variation of 1.58?±?0.05 for the five known crystalline phases of Ho to 282?GPa. The experimental equation of state of Ho is presented up to a threefold volume compression V/Vo?=?0.322.  相似文献   

9.
We have developed a double stage diamond anvil cell (ds-DAC) technique for reproducible pressure by precisely fabricating 2nd stage anvils using a focused ion beam system. We used 2nd stage micro-anvils made of ultra-fine (V/V0?=?0.633 for the smallest d-spacing. The calculated pressure for this minimum volume varies from 430 to 630?GPa, depending on the choice of the equation of state of rhenium. We conclude that the most likely pressure achieved for the minimum volume of rhenium is in a range of 430–460?GPa based on a calibration using the platinum pressure scale to 280?GPa and the latter value of 630?GPa is unreasonably high, suggesting that the pressures in an earlier study for the equation of state of rhenium would have been significantly overestimated.  相似文献   

10.
ABSTRACT

Both micro-paired and conical support type double-stage diamond anvil cells (ds-DAC) were tested using a newly synthesized ultra-fine nano-polycrystalline diamond (NPD). Well-focused X-ray sub-micron beam and the conically supported 2nd stage anvils (micro-anvils) with 10?μm culet enable us to obtain good quality X-ray diffraction peaks from the sample at around 400?GPa. The relationship between confining pressure and sample pressure depends heavily on the initial height (thickness) of micro-anvils, the difference of a few micrometers leads to a quite different compression path. The conical support type is a solution to retain both enough thickness and strength of micro-anvils at higher confining pressure conditions. All conical support ds-DAC experiments terminated by the failure of the 1st stage anvil instead of 2nd one. The combination of ultra-fine NPD 2nd stage anvil and NPD 1st stage anvil opens a new frontier for measurement of the X-ray absorption spectrum above 300?GPa.  相似文献   

11.
采用金刚石对顶砧装置对直径分布在1.3 nm左右的单壁碳纳米管进行了高压拉曼光谱研究.实验结果表明随压力的增加碳管的截面形状发生了由圆到椭圆再到扁平的变化,这和我们之前的研究结果一致.从31 GPa卸压至常压后碳管的结构得到了较好的保持,这个压力值明显高于传统的Sp2键结构的碳材料所能稳定存在的压力范围(20 GPa以...  相似文献   

12.
准等熵压缩实验技术已用来研究材料在高压下的状态方程。基于聚龙一号装置平台,实现对样品的准等熵压缩和超高速飞片发射,进行了一系列实验来加深对负载构型的理解。通过对负载结构的设计,研究了构设电极尺寸与电极间隙对磁应力的大小与分布的影响。基于模拟和实验结果,带状线负载结构可以很好地提高磁压和提升装置的运行水平,其电极表面磁压分布也具有良好的均匀性和平面性。目前为止,已经可以用带状线负载在聚龙一号装置上获得峰值压力高达约100 GPa的准等熵压缩,并获得速度超过10 km/s的超高速飞片。  相似文献   

13.
ABSTRACT

A new opposed type double-stage large volume cell has been developed to compress large volume samples to more than 100?GPa (Mbar) pressure. A pair of second-stage diamond anvils is introduced into the first-stage Paris–Edinburgh press. The double-stage large volume cell allows the generation of ultrahigh pressures using a large culet diameter of the second-stage diamond anvils (diameters of 0.5–1.2?mm). Pressure generation up to 131?GPa has been achieved by using the culet diameter of 0.5?mm. Sample volume of the double-stage large volume cell can be more than ~100 times larger than that of conventional Mbar experiment using a diamond anvil cell. The double-stage large volume cell has a large opening in the horizontal plane for X-ray measurements, which is particularly suited for the multi-angle energy dispersive X-ray diffraction measurement, thus opening a new way of in situ structural determinations of amorphous materials at Mbar pressures.  相似文献   

14.
The structural phase transitions of bismuth under rapid compression has been investigated in a dynamic diamond anvil cell using time-resolved synchrotron x-ray diffraction. As the pressure increases, the transformations from phase I,to phase II, to phase III, and then to phase V have been observed under different compression rates at 300 K. Compared with static compression results, no new phase transition sequence appears under rapid compression at compression rate from 0.20 GPa/s to 183.8 GPa/s. However, during the process across the transition from phase III to phase V, the volume fraction of product phase as a function of pressure can be well fitted by a compression-rate-dependent sigmoidal curve.The resulting parameters indicate that the activation energy related to this phase transition, as well as the onset transition pressure, shows a compression-rate-dependent performance. A strong dependence of over-pressurization on compression rate occurs under rapid compression. A formula for over-pressure has been proposed, which can be used to quantify the over-pressurization.  相似文献   

15.
用金刚石压砧高压x 射线衍射技术研究了_LiIO_3 在室温高压下的压缩行为, 压力达23.0GPa. 观察到晶格压缩的各向异性, 其c/a 轴比以-6.187 * l0**3 /GPa的速率减小. 得到其常压下的体弹模量B。= 3 9.2 G Pa, 体弹模量对压力的一阶导数B。=3.7 8 7. _LiIO_3在高温高压下转变成四方结构, 与淬火卸压所得的“_LiIO_3, 结构一致. 关键词:  相似文献   

16.
ABSTRACT

The isothermal compression of transition metal tantalum (Ta) was studied in a diamond anvil cell by X-ray diffraction utilizing rhenium (Re) and gold (Au) as internal X-ray pressure standards. The Re pressure marker was employed during non-hydrostatic compression to pressures up to 310?GPa while the Au pressure marker was used during quasi-hydrostatic compression in a neon pressure-transmitting medium to 80?GPa. Two ultra-high pressure experiments were conducted on Ta and Re mixtures utilizing focused-ion beam machined toroidal diamond anvils with central flats varying from 8 microns to 16 microns in diameter. The Ta metal was observed to be stable in the body-centered-cubic phase to a volume compression V/V0?=?0.581. The measured equations of state (EOS) of Ta using two different calibrations of the Re pressure marker are compared with the ambient temperature isotherm derived from shock compression data. We provide a detailed analysis of EOS fit parameters for Ta under quasi-hydrostatic and non-hydrostatic conditions.  相似文献   

17.
 在北京同步辐射装置(BSRF)高压站对采自于河北大麻坪的天然顽火辉石,在室温高压(0~31.64 GPa)下,利用金刚石压腔装置(DAC),进行了能量色散X射线粉末衍射(EDXD)原位测量,得到了顽火辉石在不同压力下的衍射图谱,并利用UnitCell软件进行解谱,获得了其晶胞参数a、b、c和晶胞体积V及其随压力的变化,最后利用Murnaghan等温方程得到了天然顽火辉石的体积模量KT(0)=172 GPa、压缩系数及p-V状态方程,发现沿a、b、c三方向的压缩系数存在明显的各向异性,结果与斜方辉石的弹性波速各向异性完全一致。  相似文献   

18.
Baskakov  A. O.  Ogarkova  Yu. L.  Lyubutin  I. S.  Starchikov  S. S.  Ksenofontov  V.  Shylin  S. I.  Kroitor’  D.  Tsurkan  V.  Medvedev  S. A.  Naumov  P. G. 《JETP Letters》2019,109(8):536-540
JETP Letters - The transport and magnetic properties of the Rb0.8Fe1.6S2 crystal have been studied under quasihydrostatic compression to a pressure of 40.5 GPa in diamond anvil cells. A...  相似文献   

19.
用金刚石压砧高压X射线衍射技术研究了α-LilO3在室温高压下的压缩行为,压力达23.0GPa。观察到晶格压缩的各向异性,其c/a轴比以-6.187×10-3/GPa的速率减小。得到其常压下的体弹模量B0=39.2GPa,体弹模量对压力的一阶导数B'0=3.787。α-LiIO3在高温高压下转变成四方结构,与淬火卸压所得的ε-LiIO3结构一致。 关键词:  相似文献   

20.
The flow and convective heat transfer characteristics under different heating loads in micro-pin-fins of circle, diamond and triangle are experimentally investigated with Reynolds number ranging from 0–1,000. The pressure drops, friction factors, thermal resistance and Nusselt number in micro-pin-fins with different cross-section shapes are obtained when the heating load changes from 50 to 150 W. Basing on the experimental results, the mechanisms of the influence of heating load on the resistance and heat transfer characteristics in micro-pin-fins with different cross-section shapes are detailed analysed. It is found that pressure drops in three types of micro-pin-fins all become large with the increase of the heating load, and the change of pressure drop in triangular micro-pin-fins is larger than those in the other two micro-pin-fins. At low Re, the friction factors in the three types of micro-pin-fins become large with the increase of the heating load, but this phenomenon disappears when Re>400 for the circle and diamond micro-pin-fins, and Re>250 for the triangular micro-pin-fins. The convective heat transfer in micro-pin-fins with cross-section shapes of circle, diamond and is enhanced by increasing the heating load, but the convective heat transfer coefficients and Nu in the triangular micro-pin-fins becomes slightly smaller when Re>250.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号