首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and sensitive analytical method was developed for the residue analysis of ten quinolones (enoxacin (ENO), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL), and flumequine (FLU)) in cow's milk. The analytes were extracted from milk by a deproteinization step followed by a simple SPE cleanup procedure using LiChrolut RP-18 Merck cartridges. Recoveries varied between 75 and 92%. HPLC separation was performed at 25 degrees C using an ODS-3 PerfectSil Target (250 x 4 mm(2)) 5 microm analytical column (MZ-Analysentechnik, Germany). The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered by a gradient program at the flow rate of 1.2 mL/min. Elution of the ten analytes and the internal standard (caffeine, 7.5 ng/microL) was completed within 27 min. Column effluent was monitored using a photodiode array detector, set at 275 and 255 nm. The developed method was validated according to the criteria of Commission Decision 2002/657/EC. The LODs of the specific method of quinolones' determination in milk varied between 1.5 and 6.8 ng/microL.  相似文献   

2.
A densitometric high performance thin-layer chromatography (HPTLC) method was developed and validated for the quantitative analysis of haloperidol in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n-butanol/acetic acid glacial/water (5:10:10:2.5:2.5 v/v/v/v/v) as the mobile phase. Quantitative analysis was carried out at a wavelength of 254 nm. The method was linear in the 10-100 ng/microL range, with a determination coefficient of 0.999. The coefficients of variation for precision were not higher than 2.35%. The detection limit was 0.89 ng/microL, and the quantification limit was 2.71 ng/microL. The accuracy ranged from 97.76 to 100.33%, with a CV not higher than 4.50%. This method was successfully applied to quantify haloperidol in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision and accuracy for the quantitative determination of haloperidol in tablets.  相似文献   

3.
A reversed-phase high-performance liquid chromatographic assay for the simultaneous quantitative determination of seven ginsenosides, Rb(1), Rb(2), Rc, Rd, Rg(1), Re and Rf in pharmaceutical preparations is described. Chromatographic separation was achieved in less than 20 min using a 250 x 4 mm Lichrospher, 5 microm, 100 A diol column with detection at 203 nm. The method was validated over the range of 2.5-20 ng/microL using a 20 microL sample volume. The average accuracy at five concentrations was 90-100%, and the within-day and between-day precision ranged from 1 to 7% expressed as coefficient of variation. The detection limit and the quantitation limit of the method were 20 and 50 ng injected for each ginsenoside, respectively.  相似文献   

4.
A quantitative method for the determination of four penicillin antibiotics, amoxicillin (AMO), oxacillin (OXA), cloxacillin (CLO), and dicloxacillin (DICLO), has been developed. Separation was achieved on an Inertsil ODS-3 (250 x 4 mm, 5 microm) column after selective extraction of penicillin drugs from biological matrices by means of SPE. Gradient elution with a mobile phase consisting of 0.1% TFA (pH 1) and ACN, and PDA detection with monitoring at 240 nm was applied. Salicylic acid (5 ng/microL) was used as the internal standard. RP-8 Adsorbex Merck cartridges provided high absolute recoveries (98-101%). The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 8) and between-day precision (n = 8) revealed RSD <10%. Recoveries from biological samples ranged from 91 to 103%. The detection limits were estimated as 3.3 ng for AMO, OXA, and CLO, and 6.6 for DICLO in blood plasma. LOD in whole blood and urine was 6.6 ng. Injection volume was 20 microL. The method was applied to commercially available AMO containing pharmaceuticals and spiked biological matrices. The method was also applied to biological samples after AMO oral administration, where the drug was successfully identified and quantified.  相似文献   

5.
Here we describe the extraction from soil of the major photo-transformation products (PTPs) of enrofloxacin (ENR) and danofloxacin (DAN), two fluoroquinolones (FQs) widely used in veterinary medicine and of growing environmental concern, because their PTPs have been shown to retain high antibacterial activity. The microwave-assisted extraction (MAE) technique developed previously for determination of FQs, and based on use of an alkaline aqueous solution of Mg(2+) as a complexing agent for the analytes, was applied to agricultural soil samples fortified with different amounts of the PTPs and residues of the parent compounds (53-1000 ng g(-1) for ENR, 24-148 ng g(-1) for DAN). The PTPs, obtained by irradiation of thin layers of the two drugs, were, after extraction, separated and quantified by HPLC-FD. Good recovery (70-130%) and precision (RSDs 1-6% for repeatability and 9-22% for reproducibility) were obtained by use of the overall analytical procedure. The method was applied for the first time to study the in-soil lifecycle of ENR and DAN PTPs, generated in the matrix by irradiation under natural sunlight, at environmentally significant concentrations. Results indicated that soil-adsorbed FQ PTPs are themselves liable to photodegradation and have lifetimes comparable with those of parent compounds.  相似文献   

6.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   

7.
A simple, rapid and sensitive HPLC method was developed and validated for the determination of four tricyclic antidepressants (TCAs): amitriptyline, doxepin, clomipramine (CLO) and imipramine, in pharmaceutical formulations and biological fluids. A Kromasil C(8 )analytical column (250 x 4 mm, 5 microm) was used for the separation, with a mobile phase consisting of 0.05 M CH(3)COONH(4) and CH(3)CN (45:55 v/v) delivered at 1.5 mL/min isocratically. Quantification was performed at 238 nm, with bromazepam (1.5 ng/microL) as the internal standard. The determination of TCAs in blood plasma was performed after protein precipitation. Urine analysis was performed by means of SPE using Lichrolut RP-18 Merck cartridges providing high absolute recoveries (> 94%). Direct analysis of urine was also performed after two-fold dilution. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity. Repeatability (n = 5) and between-day precision (n = 5) revealed RSD <13%. Recoveries from biological samples ranged from 91.0 to 114.0%. The absolute detection limit of the method was calculated as 0.1-0.6 ng in blood plasma and 0.2-0.5 ng in extracted urine or 0.4-0.7 in diluted urine. The method was applied to real samples of plasma from a patient under CLO treatment.  相似文献   

8.
A simple and sensitive HPLC method was developed and validated for the determination of four frequently prescribed 1,4-benzodiazepines: alprazolam (ALP), bromazepam (BRZ), diazepam (DZP), and flunitrazepam (FNZ). Separation was achieved on an Inertsil C8 analytical (250 mm x 4 mm, 5 microm) column, after selective extraction of benzodiazepine drugs from biological matrices by means of SPE. Isocratic elution was performed with a mobile phase consisting of CH3COONH4, 0.05 M CH3OH, and CH3CN (33:57:10 by volume). Quantification was performed at 240 nm with mefenamic acid (6 ng/microL) as the internal standard. DSC-18 Supelco cartridges provided high absolute recoveries (81-115%). The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 8) and between-day precision (n = 8) revealed RSD <12%. Recoveries from biological samples ranged from 81.2 to 115%. The detection limit of the method was calculated as 3.3-10.2 ng in blood plasma and 2.6-12.6 ng in urine for 20 microL injection volume. The method was applied to spiked biological matrices. Moreover, the method was applied to real samples of urine after an oral administration.  相似文献   

9.
A method for simultaneous determination of flumequine (FLM), oxolinic acid (OXO), sarafloxacin (SAR), danofloxacin (DAN), enrofloxacin (ENR), and ciprofloxacin (CIP) in tilapia (Orechromis niloticus) fillets, using liquid chromatography-tandem mass spectrometry (LC-ESI-MS-MS QToF) is presented. The quinolones were extracted from the food matrix with a solution of 10% trichloroacetic acid-methanol (80:20 v/v) with ultrasonic assistance. Clean-up of the extract solution was performed by using polymeric solid-phase extraction cartridges. The LC separation was carried out on an octadecyl hybrid silica column (C18, 150 mm × 3 mm, 5 μm). The column temperature was set at 30 °C, and gradient elution (0.2 mL min−1) was performed using water and acetonitrile, both containing 0.1% of acetic acid, as mobile phase components. The analytes were ionized using electrospray in the positive polarity mode. The following analytical results were obtained: linearity was about 0.99 for all the quinolones; intra and inter-assay precision (RSD%) were lower than 12.7 and 20%, respectively; and recoveries were from 89 to 112%. The quantitation limits were below the maximum residue limits established for the analytes. The method is suitable for the determination of quinolone residues in fish fillets and the QToF technique made it possible to obtain m/z ratios with less than 10 ppm of error for each analyte.  相似文献   

10.
A rapid, accurate and sensitive method has been developed for the quantitative determination of four fluoroquinolone antimicrobial agents, enoxacin, norfloxacin, ofloxacin and ciprofloxacin, with high in-vitro activity against a wide range of Gram-negative and Gram-positive organisms.A Kromasil 100 C(8) 250 mm x 4 mm, 5 microm analytical column was used with an eluting system consisting of a mixture of CH(3)CN-CH(3)OH-citric acid 0.4 mol L(-1) (7:15:78 %, v/v). Detection was performed with a variable wavelength UV-visible detector at 275 nm resulting in limits of detection: 0.02 ng per 20 microL injection for enoxacin and 0.01 ng for ofloxacin, norfloxacin and ciprofloxacin. Hydrochlorothiazide (HCT) was used as internal standard at a concentration of 2 ng microL(-1). A rectilinear relationship was observed up to 2 ng microL(-1) for enoxacin, 12 ng microL(-1) for ofloxacin, 3 ng microL(-1) for norfloxacin, and 5 ng microL(-1) for ciprofloxacin. Separation was achieved within 10 min. The statistical evaluation of the method was examined by performing intra-day (n=8) and inter-day precision assays (n=8) and was found to be satisfactory with high accuracy and precision. The method was applied to the direct determination of the four fluoroquinolones in human blood serum. Sample pretreatment involved only protein precipitation with acetonitrile. Recovery of analytes in spiked samples was 97+/-6% over the range 0.1-0.5 ng microL(-1).  相似文献   

11.
An ion-pair liquid chromatographic assay was developed and validated for the determination of ceftriaxone in cerebrospinal fluid. Chromatographic separation was achieved on a C18 column (125 x 4 mm, 5 microm) with detection at 270 nm, a 1 mL/min flow rate and a 50 microL loop. The mobile phase consisted of 300 mL acetonitrile, 50 mL 0.1M phosphate buffer (pH 7.4), 3.2 g tetrabutylammonium bromide as the ion-pairing agent, and dilution with distilled deionized water to 1 L. Cephradine was used as the internal standard. The assay was linear for ceftriaxone concentrations of 0.5-50 microg/mL. The coefficients of variation for precision were <4.61%. The accuracy ranged from 96.07 to 102.42%. The detection and quantitation limits were 0.019 and 0.065 microg/mL, respectively. This method was used to quantify ceftriaxone in the cerebrospinal fluid of children with meningitis. The results showed that the method described here is useful for the determination of ceftriaxone in cerebrospinal fluid.  相似文献   

12.
郭伟  刘永  刘宁 《色谱》2009,27(4):406-411
建立了一种同时测定鸡肉中7种氟喹诺酮类药物残留的超高效液相色谱-电喷雾串联质谱确证分析方法(UPLC-ESI-MS/MS)。样品经酸化乙腈提取、正己烷脱脂和HLB固相萃取柱净化,采用ACQUITY UPLCTM BEH C18色谱柱(50 mm×2.1 mm,1.7 μm)分离,以0.1%甲酸水溶液和乙腈作为流动相进行梯度洗脱,电喷雾质谱检测,正离子多反应监测模式进行定性和定量分析。7种药物在5~100 μg/kg范围内线性关系良好,相关系数(r2)均大于0.99;以5,25,50 μg/kg3个浓度水平进行添加回收试验,7种药物的平均回收率在79.2%~108.6%之间,相对标准偏差为4.2%~8.9%,方法的检出限(LOD)为0.2~1.4 μg/kg。方法重现性好、灵敏度高、分析时间短、确证能力强,适用于鸡肉中氟喹诺酮类药物多残留的确证检测。  相似文献   

13.
A rapid and sensitive method for the analysis of delta9-tetrahydrocannabinol (THC) in preserved oral fluid was developed and fully validated. Oral fluid was collected with the Intercept, a Food and Drug Administration (FDA) approved sampling device that is used on a large scale in the U.S. for workplace drug testing. The method comprised a simple liquid-liquid extraction with hexane, followed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis. Chromatographic separation was achieved using a XTerra MS C18 column, eluted isocratically with 1 mM ammonium formate-methanol (10:90, v/v). Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions. The use of the liquid-liquid extraction was demonstrated to be highly effective and led to significant decreases in the interferences present in the matrix. Validation of the method was performed using both 100 and 500 MicroL of oral fluid. The method was linear over the range investigated (0.5-100 ng/mL and 0. 1-10 ng/mL when 100 and 500 microL, respectively, of oral fluid were used) with an excellent intra-assay and inter-assay precision (relative standard deviations, RSD <6%) for quality control samples spiked at a concentration of 2.5 and 25 ng/mL and 0.5 and 2.5 ng/mL, respectively. Limits of quantification were 0.5 and 0.1 ng/mL when using 100 and 500 microL, respectively. In contrast to existing GC-MS methods, no extensive sample clean-up and time-consuming derivatisation steps were needed. The method was subsequently applied to Intercept samples collected at the roadside and collected during a controlled study with cannabis.  相似文献   

14.
An instrumental planar chromatographic (HPTLC) method for quantitative analysis of clozapine in human serum was developed and validated. Clozapine was extracted with n-hexane-isoamyl alcohol (75:25 v/v). The chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of chloroform and methanol (9:1 v/v) as mobile phase. Quantitative analyses were carried out by densitometry at a wavelength of 290 nm. The method was linear between 10 and 100 ng/spot, corresponding to 0.10 and 1.00 ng/microL of clozapine in human serum after extraction process and applying 10 microL to the chromatographic plates. The method correlation coefficient was 0.999. The intra-assay variation was between 2.10 and 3.33% (n = 5) and the interassay was between 2.67 and 4.44% (n = 9). The detection limit was 0.03 ng/microL, and the quantification limit was 0.05 ng/microL. The method proved to be accurate, with a recovery between 97.00 and 99.00%, with an RSD not higher than 7.22%, and was selective for the active principle tested. This method was successfully applied to quantify clozapine in patient serum samples. In conclusion, the method is useful for the quantitative determination of clozapine in serum.  相似文献   

15.
In this work, a simple isocratic reversed-phase HPLC method for determination of alpha-tocopherol in human erythrocytes has been developed and validated. After separation of plasma the erythrocytes were washed three times with 0.9% sodium chloride containing 0.01% butylated hydroxytoluene (BHT) as antioxidant and then were diluted 1:1 (v/v) with the same solution. In the liquid-liquid extraction (LLE) procedure, 2500 microL of n-hexane was added to 500 microL of erythrocytes. After 2 min this mixture was deproteinized by addition of cool ethanol (500 microL, 5 min) denatured with 5% methanol containing alpha-tocopherol acetate (20 micromol L(-1)), as internal standard, and then extracted for 5 min by vortex mixing. After centrifugation (10 min, 1600xg) an aliquot (2000 microL) of the clean extract was separated and evaporated under nitrogen. The residue was dissolved in 400 microL methanol and analysed by reversed-phase HPLC on a 4.6 mmx150 mm, 5 microm Pecosphere C18 column; the mobile phase was 100% methanol, flow rate 1.2 mL min(-1). The volume injected was 100 microL and detection was by diode-array detector at a wavelength of 295 nm. The extraction recovery of alpha-tocopherol from human erythrocytes was 100.0+/-2.0%. The detection limit was 0.1 micromol L(-1) and a linear calibration plot was obtained in the concentration range 0.5-20.0 micromol L(-1). Within determination precision was 5.2% RSD (n=10), between determination precision was 6.1% RSD (n=10). The method was applied successfully in a clinical study of patients with acute pancreatitis and for determination of the reference values in the healthy Czech population.  相似文献   

16.
An accurate, sensitive, robust and selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin hydrochloride (17-DMAG) in human plasma has been developed and validated. Plasma samples were prepared by liquid/liquid extraction with ethyl acetate. The chromatographic separation was achieved within 9 min on a Synergy Polar column with a linear gradient and a mobile phase consisting of methanol and 0.1% formic acid in water. Detection of 17-DMAG and the internal standard (IS), olomoucine, was achieved by MS/MS with electrospray ionisation in positive ion mode. The calibration curve, ranging from 1.89 to 1890 nM, was linear r > 0.994 using a 1/y2 weighted linear regression. The assay showed no significant interferences from endogenous compounds. The lower limit of quantitation (LLOQ) was 1.89 nM, using 250 microL of plasma, with inter-assay precision (%RSD) and accuracy (%RE) values of 11.6% and -5.8%, respectively. Intra-assay precision ranged from 7.8-13.6%. The method described here is being used to evaluate the pharmacokinetic profiles of 17-DMAG given as a once weekly infusion in patients with advanced solid tumours.  相似文献   

17.
ABSTRACT: A simple reversed phase high performance liquid chromatographic method with diode array detector (HPLC-DAD) has been developed and subsequently validated for the determination of fexofenadine hydrochloride (FEX) and its related compounds; keto fexofenadine (Impurity A), meta isomer of fexofenadine (Impurity B), methyl ester of fexofenadine (Impurity C) in addition to the methyl ester of ketofexofenadine (Impurity D). The separation was based on the use of a Hypersil BDS C-18 analytical column (250 × 4.6 mm, i.d., 5 μm). The mobile phase consisted of a mixture of phosphate buffer containing 0.1 gm% of 1-octane sulphonic acid sodium salt monohydrate and 1% (v/v) of triethylamine, pH 2.7 and methanol (60:40, v/v). The separation was carried out at ambient temperature with a flow rate of 1.5 ml/min. Quantitation was achieved with UV detection at 215 nm using lisinopril as internal standard, with linear calibration curves at concentration ranges 0.1-50 μg/ml for FEX and its related compounds. The optimized conditions were used to develop a stability-indicating HPLC-DAD method for the quantitative determination of FEX and its related compounds in tablet dosage forms. The drugs were subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. Complete separation was achieved for the parent compounds and all degradation products. The method was validated according to ICH guidelines in terms of accuracy, precision, robustness, limits of detection and quantitation and other aspects of analytical validation.  相似文献   

18.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

19.
An accurate, reproducible, and sensitive method for the determination of buspirone HCl and its potential impurities is developed and validated. The validated liquid chromaography method is conducted to meet the Food and Drug Administration/ International Conference on Harmonization requirements for the analysis of buspirone HCI in the presence of its impurities. Five buspirone HCI potential impurities, including 1-(2-pyrimidinyl)-piperazine (I), propargyl chloride (II), 3,3'-tetramethylene glutarimide (III), propargyl glutarimide (IV), and the Mannich base-condensate of I-IV fumarate (V), are separated using a microBondapack C18 column by gradient elution with a flow rate 2.0 mL/min. The initial mobile phase composition is 90:10 (v/v) 10mM KH2PO4 (pH 6.1)-acetonitrile. After a 1-min initial hold, a linear gradient is performed in 26 min to 35:65 (v/v) 10mM KH2PO4 (pH 6.1)-acetonitrile. The samples are detected at 210 and 240 nm using a photo-diode array detector. The linear range of detection for buspirone HCI was between 1.25 ng/microL and 500 ng/microL, with a limit of quantification of 1.25 ng/microL. The linearity, range, peak purity, selectivity, system performance parameters, precision, accuracy, and robustness for all of the impurities were also shown to have acceptable values.  相似文献   

20.
The potential of solid-phase extraction coupled on-line to liquid chromatography/electrospray tandem mass spectrometry (SPE-LC-ESI-MS/MS) has been investigated in this paper for the efficient sensitive quantification and confirmation of 16 antibiotics in water. The list of targeted analytes included 10 quinolones (oxolinic acid (OXO), nalidixic acid (NAL), flumequine (FLU), marbofloxacine (MAR), ofloxacine (OFLO), enrofloxacine (ENR), pefloxacine (PEF), ciprofloxacine (CIP), pipemidic acid (PIPE), norfloxacine (NOR)) and 6 penicillins (penicillin G (PEN), oxacillin (OXA), dicloxacillin (DIC), piperacillin (PIP), cloxacillin (CLO) and ampicillin (AMP)) that were determined in ground and surface water. The procedure is based on the injection of 9.8 mL of sample into the SPE-LC-MS/MS system and the measurement of antibiotics by selected reaction monitoring mode, using a triple quadrupole analyser. The method has been validated at realistic low concentrations that might be present in environmental water, i.e. 10 and 100 ng L(-1), obtaining recoveries between 74% and 123% with relative standard deviation lower than 14%. Matrix effects were not relevant in most of cases, except for ampicillin in surface water, where notable signal suppression was observed. The limits of detection were as low as 0.4-4.3 ng L(-1). The method developed allows the rapid screening and quantification of all the analytes selected by acquiring one MS/MS transition (normally the most sensitive) for each compound. It was applied to a number of actual surface and groundwater samples with several compounds being detected, mainly quinolones, at low ng L(-1) levels. Special attention was given to the confirmation of compounds detected in water due to the difficulties of obtaining confident confirmation at low ng L(-1). This matter has been of growing concern in the last few years as reflected by recent papers and correspondence. The acquisition of several MS/MS transitions for each compound detected in a second independent analysis allowed the unequivocal confirmation of identity, avoiding reporting false-positives. Finally, the potential of QTOF instruments to confirm positive samples has also been evaluated and compared with triple quadrupole analysers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号