首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver nanocomposite multilayer films were prepared through the in situ method. Multilayer thin films, prepared through the sequential electrostatic deposition of a positively charged third-generation poly(amidoamine) dendrimer (PAMAM) and negatively charged poly(styrenesulfonate) (PSS) and poly(acrylic acid) (PAA), were utilized as nanoreactors for the formation of silver nanoparticles. The silver ions were preorganized in layer-by-layer (LBL) films composed of PAMAM dendrimers and subsequently reduced with hydrogen to prepare the silver nanoparticles. The UV-vis spectrum and profilometer were used to characterize the regular growth of bilayers. UV-vis absorption from plasmon resonance at 435 nm and TEM images indicated the formation of the silver nanoparticles in the multilayer films. The silver nanocomposite LBL films were also constructed on the indium tin oxide-glass and investigated using cyclic voltammetry. The silver nanoparticles in the multilayer films have a stronger negative redox potential. The silver nanocomposite LBL films may have a potential application in the catalysis of reduction of 4-nitrophenol with sodium borohydride.  相似文献   

2.
Multilayer polymer films composed of a ruthenium terpyridine complex containing poly(p-phenylenevinylene) (Ru-PPV) and sulfonated polyaniline (SPAN) were prepared by a layer-by-layer electrostatic self-assembly deposition. The deposition process was carried out from SPAN solution in water and Ru-PPV in dimethylformamide (DMF). Optical-quality multilayer thin films were obtained. The film growth process was monitored by quartz crystal microbalance, and the surface morphology of the films was studied by atomic force microscopy. It was found that the properties of the multilayer films were dependent on deposition conditions such as the pH of the SPAN solution, the presence of salt in the polymer solutions, and the post-film-forming thermal annealing process. Cross-section transmission electron microscopic images suggested that there was no stratified structure formed in the multilayer films. Photovoltaic cells were fabricated by sandwiching the multilayer films between indium-tin-oxide and aluminum electrodes. The device performances were examined by illumination with AM 1.5 simulated solar light. The power conversion efficiencies of these devices were on the order of 10(-3)%. The maximum incident photon-to-electron conversion efficiency (IPCE) of the devices was found to be approximately 2% at 510 nm, which is consistent with the absorption maximum of the ruthenium complex. This indicates that the photosensitization process is due to the electronic excitation of the ruthenium complex.  相似文献   

3.
A simple layer-by-layer deposition technique was used to fabricate the multilayer thin films of unmodified silver triangular nanoplates(AgTNPs).The multilayer of AgTNPs thin films were fabricated by alternate deposition of each anionic sodium citrate stabilized AgTNPs and cationic poly(diallyldimethylammonium chloride).All prepared AgTNPs multilayer thin films were exhibited a strong plasmon band at the wavelength of 667 nm,which confirmed the formation of AgTNPs onto the substrate.The characteristics of the multilayer thin films were investigated using contact angle measurement,UV-visible spectroscopy,X-ray diffraction analysis(XRD),atomic force microscope(AFM)and field emission scanning electron microscope(FESEM).As these films are to be used as a mercury(II)colorimetric sensor,the changes in optical properties of the films were evaluated for various mercury(Ⅱ)concentrations.AgTNPs assembled into thin films showed a strong color shift from blue to mauve and colorless when exposed to mercury(Ⅱ).The constructed multilayer thin films exhibited excellent color changes of mercury(II) with a linear range between 0.5 and 20 ppm.The limit of detection(LOD) and limit of quantitation(LOQ) were 0.45 ± 0.002 and 1.52 ± 0.002 ppm,respectively.The recovery values of AgTNPs multilayer thin films are satisfactory in the range of 100.1%-106.4%when applied to determining mercury(Ⅱ) in water samples.  相似文献   

4.
Polyelectrolyte multilayer thin films were prepared via the alternate deposition of poly(allylamine hydrochloride) (PAH) and a blend of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS). When the pH of the blend solution was 3.5, the presence of PAA in this solution significantly increased the total film thickness. With only 10 wt % PAA in the blend adsorption solution, a large increase in film thickness was observed (92 nm cf. 18 nm). It was also demonstrated that the total amount of PSS adsorbed was enhanced by the presence of PAA in the blend solution, showing that the blend solution composition influenced that of the multilayer films. Thin films prepared with nanoblended layers also showed improved pH stability, because they exhibited reduced film rearrangement upon exposure to acidic conditions (pH = 2.5).  相似文献   

5.
Sugar-sensitive thin films were prepared by a layer-by-layer deposition of concanavalin A (Con A) and glycogen on the surface of a quartz slide and their sugar-induced decomposition was studied. The Con A/glycogen multilayer films can be decomposed by exposing them to sugar solutions (D-glucose, D-mannose, methyl-alpha-D-glucose and methyl-alpha-D-mannose), as a result of displacement of sugar residues of glycogen from the binding sites of Con A by the free sugar added in the solution. The rate of decomposition significantly depended on the type of sugar and its concentration.  相似文献   

6.
通过静电层层自组装方法在预修饰聚二烯丙基二甲基氯化铵的电极基片上制备了Dawson型磷钼钒杂多酸/聚酰胺-胺多层复合膜. 用X射线光电子能谱、紫外-可见光谱、循环伏安法和原子力显微镜分析表征了多层复合膜的形成过程; 用循环伏安法表征了该复合膜修饰电极的电化学性能, 研究结果表明, 该复合膜修饰的电极稳定性好, 对亚硝酸盐、溴酸盐的还原以及抗坏血酸的氧化具有良好的催化活性.  相似文献   

7.
A novel nanocomposite of CdTe–PAMAM–MWNT was synthesized by covalently linking CdTe quantum dots (QDs) onto highly water-soluble multi-wall carbon nanotubes (MWNTs) functionalized with dendritic poly(amidoamine) (PAMAM). The IR, UV–vis and TEM methods has been used for the characterization of the composites. A facile method for controlling the density of QDs in the composite by simply changing the ratio of CdTe QDs/PAMAM–MWNT, as was verified by the TEM images. The experiments revealed that PAMAM and PAMAM–MWNT, once covalently linked with CdTe QDs, had remarkable effect on their fluorescence property. The fluorescence intensity of the CdTe–PAMAM hybrid was substantially enhanced as a compared to that of QDs, and the fluorescence was quenched greatly when QDs reacted with PAMAM–MWNT. The experimentally observed phenomena indicate that electron and energy transfer took place efficiently between CdTe QDs, PAMAM and MWNTs in the novel composite. These nanocomposits might hold great potential in photoelectron device and biotechnology applications.  相似文献   

8.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

9.
Three random copolymers poly(2-methacryloyloxyethyl phosphorylcholine-co-methacrylic acid) (PMAs) were synthesized by free radical polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and methacrylic acid (MA) with different monomer ratios under monomer-starved conditions. The synthesized PMA polyanions were assembled on chitosan (CS) film surfaces via electrostatic interactions. Using layer by layer (LbL) assembly with PMA polyanion and chitosan polycation, PMA/CS multilayer thin films with phosphorylcholine groups on the outer surfaces were fabricated. The modified surfaces were characterized by dynamic contact angle (DCA), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Hemocompatibility of the surfaces was estimated by protein adsorption and platelet adhesion measurements. The results indicated that cell outer membrane mimetic structures were formed on the modified surfaces with PMA as the outermost layer, and the hemocompatibility of the modified surfaces was significantly improved. This facile method of fabricating cell outer membrane mimetic surfaces may have potential applications in the fields of hemocompatible coatings, drug delivery, and tissue engineering.  相似文献   

10.
Photocatalytic multilayer films with different numbers of bilayers were prepared via an electrostatic layer-by-layer (LbL) self-assembly method. These LbL films were characterized by UV-vis spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that TiO(2) and tungstophosphate (H(3)PW(12)O(40), abbreviated as PW(12)) are successfully incorporated into the thin films. The as-prepared (TiO(2)/PW(12))(n) films show good photocatalytic performance toward methyl orange (MO) solution at pH 2.0, which is attributed to the synergistic effect between TiO(2) and PW(12). The effect of experimental parameters including number of bilayers, initial concentration, and pH value of dye solution were also studied. The multilayer films can be easily recovered and reused several times with little change of degradation, indicating that they are stable under the ultraviolet (UV) irradiation. The detection of active species displays that active holes (h(+)) play a dominant role for MO photodegradation in the TiO(2)/PW(12) system. Taking advantage of immobilization of catalysts on glass slides, the problem of recovery is solved. It is expected that photocatalytic multilayer films have substantial applications in industry.  相似文献   

11.
Multilayer thin films were prepared by the layer-by-layer (LBL) deposition method using a rhenium-containing hyperbranched polymer and poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS). The radii of gyration of the hyperbranched polymer in solutions with different salt concentrations were measured by laser light scattering. A significant decrease in molecular size was observed when sodium trifluoromethanesulfonate was used as the electrolyte. The conditions of preparing the multilayer thin films by LBL deposition were studied. The growth of the multilayer films was monitored by absorption spectroscopy and spectroscopic ellipsometry, and the surface morphologies of the resulting films were studied by atomic force microscopy. When the pH of a PTEBS solution was kept at 6 and in the presence of salt, polymer films with maximum thickness were obtained. The multilayer films were also fabricated into photovoltaic cells and their photocurrent responses were measured upon irradiation with simulated air mass (AM) 1.5 solar light. The open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of the devices were 1.2 V, 27.1 mu A cm(-2), 0.19, and 6.1x10(-3) %, respectively. The high open-circuit voltage was attributed to the difference in the HOMO level of the PTEBS donor and the LUMO level of the hyperbranched polymer acceptor. A plot of incident photon-to-electron conversion efficiency versus wavelength also suggests that the PTEBS/hyperbranched polymer junction is involved in the photosensitization process, in which a maximum was observed at approximately 420 nm. The relatively high capacitance, determined from the measured photocurrent rise and decay profiles, can be attributed to the presence of large counter anions in the polymer film.  相似文献   

12.
Layered thin films composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) were prepared by a layer-by-layer deposition of avidin and ib-PEI on a solid surface, and the disintegration induced by changing environmental pH and adding biotin in the solution was studied. The avidin/ib-PEI layered film could be deposited only from the solutions of pH 10-12. The film did not form in pH 9 or more acidic media because of a low affinity of protonated 2-iminobiotin residues in ib-PEI to avidin. The avidin/ib-PEI layered films were stable in pH 8-12 solutions, while in pH 5-7 media the film decomposed spontaneously as a result of the protonation to 2-iminobiotin residues in ib-PEI. The avidin/ib-PEI films were disintegrated also upon addition of biotin and analogues in the solution owing to the preferential binding of biotin or analogues to the binding site of avidin. The decomposition rate was arbitrarily controlled by changing the type of stimulant (biotin or analogues) and its concentration. The avidin/ib-PEI films were disintegrated rapidly by addition of 10(-)(5) M of biotin or desthiobiotin, while the rate was slower upon adding the same concentration of lipoic acid or 2-(4'-hydroxyphenylazo)benzoic acid. On the other hand, the film was fully decomposed within 1 min in the 10(-)(3) M lipoic acid or 2-(4'-hydroxyphenylazo)benzoic acid solution. Thus, the decomposition rate is highly dependent on the concentration of the stimulants. It was observed that the stimuli-induced decomposition of the films is slow at pH 12, in contrast to a rapid decomposition in pH 8 medium due to a low affinity of the protonated 2-iminobiotin to avidin. The present system may be useful for constructing stimuli-sensitive devices that can release drug or other functional molecules.  相似文献   

13.
Ultrathin multilayers are important for electrical and optical devices, as well as for immunoassays, artificial organs, and for controlling surface properties. The construction of ultrathin multilayer films by electrostatic layer-by-layer deposition proved to be a popular and successful method to create films with a range of electrical, optical, and biological properties. Dendrimer nanocomposites (DNCs) form highly uniform hybrid (inorganic-organic) nanoparticles with controlled composition and architecture. In this work, the fabrication, characterization, and optical properties of ultrathin dendrimer/poly(styrene sulfonate) (PSS) and silver-DNC/PSS nanocomposite multilayers using layer-by-layer (LbL) electrostatic assembly techniques are described. UV-vis spectra of the multilayers were found to be a combination of electronic transitions of the surface plasmon peaks, and the regular frequency modulations attributable to the multilayered film structure. The modulations appeared as the consequence of the highly regular and non-intermixed multilayer growth as a function of the resulting structure. A simple model to explain the experimental data is presented. Use of DNCs in multilayers results in abrupt, flat, and uniform interfaces.  相似文献   

14.
Poly(anilineboronic acid) (PABA)/ribonucleic acid (RNA) multilayer films were prepared under neutral condition using a layer-by-layer deposition of PABA and RNA. RNA was used both as a polyelectrolyte for multilayer formation as well as dopant for PABA. Photoelastic modulated infrared reflection absorption spectroscopy measurements suggest that PABA interacts covalently with RNA through the formation of a boronate ester, a boron-nitrogen dative bond, as well as electrostatic interactions of anionic phosphates with cationic amines. The deposition procedure was monitored with UV-vis absorption spectroscopy, showing a linear dependence of absorbance with the number of PABA/RNA bilayers deposited. The multilayer films were further characterized using X-ray photoelectron spectroscopy and ellipsometry, which yielded a PABA/RNA bilayer thickness of approximately 10 nm. The PABA/RNA multilayer films are redox-active at neutral pH, consistent with the formation of a self-doped polymer. Electrochemical control of PABA under these conditions allows potential-induced controlled release of RNA from a multilayer at neutral pH, suggesting that this may serve as a novel method for controlled release of RNA under physiological conditions.  相似文献   

15.
Polyelectrolyte multilayer (PEM) films have been recently applied to surface modification of biomaterials. Cellular interactions with PEM films consisted of weak polyelectrolytes are greatly affected by the conditions of polyelectrolyte deposition, such as pH of polyelectrolyte solution. Previous studies indicated that the adhesion of several types of mammalian cells to PAH/PAA multilayer films was hindered by low pH and high layer numbers. The objective of this study is to evaluate whether the hemocompatibility of polysulfone can be modulated by deposition of poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer films. PAH/PAA multilayer films with different layer numbers were assembled onto polysulfone at either pH 2.0 or pH 6.5. The number of platelet adhesion and the morphology of adherent platelets were determined to evaluate hemocompatibility of modified substrates. Compared to non-treat polysulfone, the PEM films developed at pH 2.0 decreased platelet adhesion, while those built at pH 6.5 enhanced platelet deposition. Platelet adhesion was found positively correlated to polyclonal antibodies binding to surface-bound fibrinogen. The extent of platelet spreading was increased with layer numbers of PEM films, suggesting that the adherent platelets on thick PEM films were prone to activation. In conclusion, PAH/PAA films with few layers developed at pH 2.0 possessed better hemocompatibility compared to other substrates.  相似文献   

16.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

17.
The layered double hydroxide (LDH) well known for its abilityto intercalate anionic compounds has been prepared conventionallyonly with bivalent and trivalent cations. In this study, Zn–Ti LDH consisting of bivalent and tetravalent cations was prepared, andreacted with organic monocarboxylic, dicarboxylic and aromatic acidsat high or room temperature. XRD patterns of the prepared LDH(Zn–Ti-CO3) showed that interlayer spacing of the LDH was 0.67 nm. The value was small compared to the usual LDH (Zn–Al–CO3)of 0.76 nm in the case of carbonate anion as the guest. Also, DTA,TG and DTG analysis indicated that the electrostatic force betweenthe layers and carbonate anions increased where the carbonate anionsin Zn–Ti LDH decomposed at 255 °C while those inZn–Al–CO3 decomposed at 230–240 °C.  相似文献   

18.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

19.
王尊志  张健夫  陈栋栋 《应用化学》2014,31(10):1149-1155
以化学交联的聚烯丙基胺盐酸盐拟葡聚糖微凝胶和透明质酸为构筑基元,在导尿管表面层层组装构筑了厚度小于500 nm可控释放抗菌药物的聚合物微凝胶膜。 广谱抗菌药物头孢曲松钠通过扩散吸附的方法在2 min内快速负载到聚合物微凝胶膜中,并且在生理盐水中可控释放时间达3 h。 抗菌实验表明,组装有层层组装微凝胶膜并负载广谱抗菌药物的导尿管具有令人满意的抗菌效果,避免感染的发生。  相似文献   

20.
由聚电解质自组装多层膜制备微孔薄膜   总被引:1,自引:0,他引:1  
带有相反电荷的聚电解质通过静电作用交替沉积可以得到自组装多层膜,由于这种技术可操作性强,用途广泛,近十几年来已有了大量的研究.聚电解质多层膜在一定条件下可以形成纳米孔和微米孔.Fu等研究了聚丙烯酸和聚乙烯基吡啶组成的氢键自组装多层膜在碱溶液中溶去其中的聚丙烯酸后,剩下的聚乙烯基吡啶重构形成微孔薄膜.Mendelsohn等发现将聚丙烯酸和聚烯丙基胺自组装而成的多层膜浸入pH=2.4左右的溶液中可制备微孔薄膜.但这些方法并不能使强聚电解质多层膜形成多孔结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号