首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The total synthesis of (+)-(6R,2′S)-cryptocaryalactone and (−)-(6S,2′S)-epi cryptocaryalactone is reported based on stereoselective reduction of δ-hydroxy β-keto ester to install 1,3-polyol system, cis Wittig olefination, and lactonization as the key steps. The synthesis of (−)-(6S,2′S)-epi cryptocaryalactone is also reported using syn-benzylidene acetal formation and a preferential Z-Wittig olefination reaction and lactonization as the key steps.  相似文献   

2.
The imidazolium salts 1,1′-dibenzyl-3,3′-propylenediimidazolium dichloride and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazolium dichloride have been synthesized and transformed into the corresponding bis(NHC) ligands 1,1′-dibenzyl-3,3′-propylenediimidazol-2-ylidene (L1) and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazol-2-ylidene (L2) that have been employed to stabilize the PdII complexes PdCl22-C,C-L1) (2a) and PdCl22-C,C-L2) (2b). Both latter complexes together with their known homologous counterparts PdCl22-C,C-L3) (1a) (L3 = 1,1′-dibenzyl-3,3′-ethylenediimidazol-2-ylidene) and PdCl22-C,C-L4) (1b) (L4 = 1,1′-bis(1-naphthalenemethyl)-3,3′-ethylenediimidazol-2-ylidene) have been straightforwardly converted into the corresponding palladium acetate compounds Pd(κ1-O-OAc)22-C,C-L3) (3a) (OAc = acetate), Pd(κ1-O-OAc)22-C,C-L4) (3b), Pd(κ1-O-OAc)22-C,C-L1) (4a), and Pd(κ1-O-OAc)22-C,C-L2) (4b). In addition, the phosphanyl-NHC-modified palladium acetate complex Pd(κ1-O-OAc)22-P,C-L5) (6) (L5 = 1-((2-diphenylphosphanyl)methylphenyl)-3-methyl-imidazol-2-ylidene) has been synthesized from corresponding palladium iodide complex PdI22-P,C-L5) (5). The reaction of the former complex with p-toluenesulfonic acid (p-TsOH) gave the corresponding bis-tosylate complex Pd(OTs)22-P,C-L5) (7). All new complexes have been characterized by multinuclear NMR spectroscopy and elemental analyses. In addition the solid-state structures of 1b·DMF, 2b·2DMF, 3a, 3b·DMF, 4a, 4b, and 6·CHCl3·2H2O have been determined by single crystal X-ray structure analyses. The palladium acetate complexes 3a/b, 4a/b, and 6 have been employed to catalyze the oxidative homocoupling reaction of terminal alkynes in acetonitrile chemoselectively yielding the corresponding 1,4-di-substituted 1,3-diyne in the presence of p-benzoquinone (BQ). The highest catalytic activity in the presence of BQ has been obtained with 6, while within the series of palladium-bis(NHC) complexes, 4b, featured with a n-propylene-bridge and the bulky N-1-naphthalenemethyl substituents, revealed as the most active compound. Hence, this latter precursor has been employed for analogous coupling reaction carried out in the presence of air pressure instead of BQ, yielding lower substrate conversion when compared to reaction performed in the presence of BQ. The important role of the ancillary ligand acetate in the course of the catalytic coupling reaction has been proved by variable-temperature NMR studies carried out with 6 and 7′ under catalytic reaction conditions.  相似文献   

3.
The C/Si/Ge-analogous compounds rac-Ph(c-C5H9)El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, rac-3a; El=Si, rac-3b; El=Ge, rac-3c) and (c-C5H9)2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 5a; El=Si, 5b; El=Ge, 5c) were prepared in multi-step syntheses. The (R)- and (S)-enantiomers of 3ac were obtained by resolution of the respective racemates using the antipodes of O,O′-dibenzoyltartaric acid (resolution of rac-3a), O,O′-di-p-toluoyltartaric acid (resolution of rac-3b), or 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate (resolution of rac-3c). The enantiomeric purities of (R)-3ac and (S)-3ac were ≥98% ee (determined by 1H-NMR spectroscopy using a chiral solvating agent). Reaction of rac-3ac, (R)-3ac, (S)-3ac, and 5ac with methyl iodide gave the corresponding methylammonium iodides rac-4ac, (R)-4ac, (S)-4ac, and 6ac (3ac4ac; 5ac6ac). The absolute configuration of (S)-3a was determined by a single-crystal X-ray diffraction analysis of its (R,R)-O,O′-dibenzoyltartrate. The absolute configurations of the silicon analog (R)-4b and germanium analog (R)-4c were also determined by single-crystal X-ray diffraction. The chiroptical properties of the (R)- and (S)-enantiomers of 3ac, 3ac·HCl, and 4ac were studied by ORD measurements. In addition, the C/Si/Ge analogs (R)-3ac, (S)-3ac, (R)-4ac, (S)-4ac, 5ac, and 6ac were studied for their affinities at recombinant human muscarinic M1, M2, M3, M4, and M5 receptors stably expressed in CHO-K1 cells (radioligand binding experiments with [3H]N-methylscopolamine as the radioligand). For reasons of comparison, the known C/Si/Ge analogs Ph2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 7a; El=Si, 7b; El=Ge, 7c) and the corresponding methylammonium iodides 8ac were included in these studies. According to these experiments, all the C/Si/Ge analogs behaved as simple competitive antagonists at M1–M5 receptors. The receptor subtype affinities of the individual carbon, silicon, and germanium analogs 3a–8a, 3b–8b, and 3c–8c were similar, indicating a strongly pronounced C/Si/Ge bioisosterism. The (R)-enantiomers (eutomers) of 3ac and 4ac exhibited higher affinities (up to 22.4 fold) for M1–M5 receptors than their corresponding (S)-antipodes (distomers), the stereoselectivity ratios being higher at M1, M3, M4, and M5 than at M2 receptors, and higher for the methylammonium compounds (4ac) than for the amines (3ac). With a few exceptions, compounds 5ac, 6ac, 7ac, and 8ac displayed lower affinities for M1–M5 receptors than the related (R)-enantiomers of 3ac and 4ac. The stereoselective interaction of the enantiomers of 3ac and 4ac with M1–M5 receptors is best explained in terms of opposite binding of the phenyl and cyclopentyl ring of the (R)- and (S)-enantiomers. The highest receptor subtype selectivity was observed for the germanium compound (R)-4c at M1/M2 receptors (12.9-fold).  相似文献   

4.
The first total synthesis of ganglio-series gangliosides GQ1b, GT1b and GD1b, which contain α-sialyl-(2→8)-α-sialic acid residue in the structure, will be described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-3,4-O-iso-propylidene-β- -galactopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β- -galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (7) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy- -glycero-α- -galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio- -glycero- -galacto-2-nonulopyranosid]onate (8) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) in acetonitrile gave the protected GD2 pentasaccharide 9, which was converted into the pentasaccharide acceptor 10 by de-O-isopropylidenation. Glycosylation of 10 with methyl thioglycoside derivatives 18, 26, 34 by use of dimethyl(methylthio)sulfonium triflate (DMTST) gave the protected ganglioside oligosaccharides 19, 27 and 35, respectively. Compounds 9, 19, 27 and 35 were transformed into the corresponding α-trichloroacetimidates 13, 22, 30 and 38, via reductive removal of benzyl groups, O-acetylation, selective removal of 2-(trimethylsilyl)ethyl group, and treatment of trichloroacetonitrile. Condensation of the imidates 13, 22, 30 and 38 with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (14) gave the corresponding β-glycosides 15, 23, 31 and 39, which were converted, via selective reduction of azido group, coupling with octadecanoic acid, de-O-acylation, and saponification of methyl esters and lactone groups, into the corresponding gangliosides GD2 (17), GD1b (25), GT1b (33) and GQ1b (41).  相似文献   

5.
The interaction of optically pure 1R,2R-diammoniumyclohexane mono-(+)-tartrate and 1S,2S-diammoniumcyclohexane mono-(−)-tartrate with 2 equiv. of o-(diphenylphosphino)benzaldehyde in the presence of 2 equiv. of potassium carbonate in a refluxing ethanol/water mixture gave the optically pure condensation products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diiminocyclohexane[1R,2R-cyclohexyl-P2N2, (R,R)-I] and N,N′-bis[o-(diphenylphosphino)benzylidene]-1S,2S-diiminocyclohexane [1S,2S-cyclohexyl-P2N2, (S,S)-I], respectively, in good yield. Reduction of optically pure (R,R)-I and (S,S)-I with NaBH4 in ethanol gave the optically pure reduced products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diaminocyclohexane[1R,2R-cyclohexyl-P2N2H4, (R,R)-II] and N,N′-bis[o-diphenylphosphine)benzylidene]-1S,2S-diaminocyclohexane[1S,2S-cyclohexyl-P2N2H4, (S,S)-II], respectively, in good yield. The coordination behaviour of I and II toward salts of CuI and AgI have been examined. The interaction of [Cu(C)3CN)4][X] (X = ClO4, PF6) with 1 equiv. of optically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II] gave the corresponding optically pure [CuL4][X] complexes, III–VI IIIa, L4 = (R,R)-I, X = PF6 IIIb, L4 = (R,R)-I, X = ClO4 IV, X = PF6; Va, L4 = (R,R)-II, X = PF6, Vb L4 = (R,R)-II, X= ClO4, VI L4 = (S,S)-II, X = PF6, in good yield. For the CuI complexes, the L4 ligand acted as a tetradentate ligand. However, a variable-temperature 31P[1H] NMR study of IIIb shows that at ambient temperature one of the imino groups of the tetradentate ligand undergoes rapid dissociation to form a tridentate ligand. The interaction of AgBF4 with 1 equiv. of otpically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II gave the corresponding optically pure [AgL4][BF4] complexes, VII–X VII L4 = (R,R)-I; VIII, L4 = (S,S)-I; IX,L4 = (R,R)-II; X, L4 = (S,S)-II], in good yield. For the AgI complexes, the L4 ligand acted as a tetradentate ligand with the two amino groups coordinated unsymmetrically to the silver. A variable temperature 31P [1H] NMR study of VII suggests that at high temperature the complex exists as a tri-coordinated complex. The structurers of IV and IX were established by X-ray diffraction studies.  相似文献   

6.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

7.
Solvothermal reaction assisted with microwave leads to the formation of two unique heterometallic cubic clusters [Ni3M′(L)3(OH)(CH3CN)3]2·CH3CN (M′=K for 1 and M′=Na for 2, where L is an anion of 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate) with higher efficiency, yields and purity than those without it. The 6-metallacrown-3 [Ni3(OH)(L)3] groups exhibit interesting ion trapping and self-assembly of size-different Na+ and K+ through form recognition and coordination activity in 1 and 2. The magnetic studies for 1 and 2 suggest that the {Ni3M′O4} (M′=K and Na) cores both display dominant ferromagnetic interactions from the nature of the binding modes of μ3-O (oxidophenyl) and μ3-OH.  相似文献   

8.
《Tetrahedron: Asymmetry》2006,17(11):1705-1714
A stereoselective synthesis of a versatile chiral synthon possessing two stereogenic centers, (2S,3S)-3-[2-(5-benzyloxypyridyl)]-2-methyl-1,3-propane diol 12 (>99% ee), was achieved by using a chemo-enzymatic method. The conversion of (2S,3S)-12 to the homochiral intermediate (2S,3S,4S)-2-benzyloxycarbonylamino-4-[2-(5-benzyloxypyridyl)]-4-tert-butyldimethylsilyloxy-3-methylbutanoic acid 2 corresponding to the N-terminal amino acid congener of nikkomycin Z 1 is described.  相似文献   

9.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

10.
The reaction of 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles (SRaaiNR) (2a/2b) with Ru(II) has synthesized [Ru(SRaaiNR)2](ClO4)2 (3a/3b) in 2-methoxyethanol. The reaction in methanol, however, has synthesized [Ru(SRaaiNR)(SRaaiNR)Cl](ClO4) (4a/4b). The solid phase reaction of SRaaiNR and RuCl3 on silica gel surface upon microwave irradiation has synthesized [Ru(SRaaiNR)(SaaiNR)](PF6) (5a/5b) [SRaaiNR represents tridentate N,N′,S-chelator; SRaaiNR is N,N′-bidentate chelator where S does not coordinate and SaaiNR refers N,N′,S-chelator where S refers to thiolato binding]. The structural characterization of [Ru(SEtaaiNEt)(SEtaaiNEt)Cl](ClO4) (4b) and [Ru(SEtaaiNEt)(SaaiNEt)](PF6) (5b) has been confirmed by single crystal X-ray diffraction study. The IR, UV–Vis, and 1H NMR spectral data also support the stereochemistry of the complexes. The complexes show metal oxidation, Ru(III)/Ru(II), and ligand reductions (azo/azo, azo/azo). The molecular orbital diagram has been drawn by density functional theory (DFT) calculation. Normal mode of analysis has been performed to correlate calculated and experimental frequencies of representative complexes. The electronic movement and assignment of electronic spectra have been carried out by TDDFT calculation both in gas and acetonitrile phase.  相似文献   

11.
《Tetrahedron: Asymmetry》1999,10(18):3493-3505
Perhydropyrimidinone (S)-1 is alkylated with very high diastereoselectivity to give trans products (2S,5R)-3, (2S,5R)–4 and (2S,5R)-5. Dialkylation of (S)-1 also proceeds with complete stereoselectivity to afford adducts (2S,5R)-6, (2S,5S)-6, (2S,5R)-7 and (2S,5S)-7. Hydrolysis (6N HCl, 100°C) of monoalkylated derivative (2S,5R)-3 gives enantiopure α-substituted β-amino acid (R)-8. Hydrolysis of dialkylated adducts 6 and 7 affords enantiopure α,α-disubstituted β-amino acids (R)- or (S)-9 and (R)- or (S)-10. Related iminoester (2S,6S)-2 is alkylated with complete diastereoselectivity to give products (2S,6S)-1113 whose hydrolysis under relatively mild conditions (2N CF3CO2H, CH3OH, 100°C) affords enantiopure N-benzoylated β,β-disubstituted β-amino acid esters (S)-1416, with intact double bonds in the olefinic substituents.  相似文献   

12.
The reaction of EtAlCl2 with 1,2-{LiN(PMes2)}2C6H4 (Mes = 2,4,6-Me3C6H2) and of butyloctylmagnesium with 1,2-{NH(PPh2)}2C6H4 gave [AlEt(1,2-{N(PMes2)}2C6H42N,N′)(THF)] (1) and [Mg(1,2-{N(PPh2)}2C6H42N,N′)(THF)2] (2), respectively. Complexes 1 and 2 were fully characterised by NMR (1H, 13C, 31P) and IR spectroscopy and mass spectrometry. Complexes 1 and 2 were employed as catalysts in the polymerisation of -caprolactone, which produced polymers with a narrow molecular weight distribution. For comparison the polymerisations of -caprolactone and β-butyrolactone were carried out with the Zn complex [ZnPr{1-N(PMes2)-2-N(PHMes2)C6H42N,N′}] (3) as catalyst, which produced polymers with narrow molecular weight distributions and high molecular weights.  相似文献   

13.
The first synthesis of tadalafil 1 (Cialis) from l-tryptophan is described. The title compound 1 was synthesized via seven steps from l-tryptophan methyl ester hydrochloride in 42.3% overall yield. Two characteristic steps involved in this synthesis are the base-catalyzed epimerization of the C-3 position of (1S,3S)-1,2,3-trisubstituted-tetrahydro-β-carboline 3a and the acid-catalyzed epimerization of the C-1 position of (1S,3R)-1,3-disubstituted-tetrahydro-β-carboline 5. The (S)-configurations at C-1 and C-3 were inverted to (R)-configurations during the epimerization reactions. The base-catalyzed epimerization of C-3 of (1S,3S)-1,2,3-trisubstituted-tetrahydro-β-carbolines 3a3e was also studied in detail.  相似文献   

14.
K. Mori 《Tetrahedron》1974,30(23-24)
(1R:7R)-(+)-exo-Brevicomin 1 and its antipode 1′ were synthesized from (2S:3S)-D-(−)-tartaric acid 2 and its antipode, respectively. This establishes the absolute configurations of both enantiomers of exo-brevicomin and afforded key materials to clarify the relationship between pheromone activity and chirality.  相似文献   

15.
Five new diorganotin(IV) complexes of the types {(Me2Sn)24-(C8H3NO6)](μ3-O)}n (1), {(Me2Sn)23-(C8H8O4)](μ3-O)}n (2), {(Me2Sn)24-(C8H10O4)](μ3-O)}n (3) {(Me2Sn)24-(C8H10O4)](μ3-O)}n (4) and {(Me2Sn)24-(C10H14O4)](μ3-O)}n (5) have been synthesized by reactions of 5-nitroisophthalic acid, meso-cis-4-cyclohexene-1,2-dicarboxylic, meso-cis-1,4-cyclohexanedicarboxylic acid, meso-cis-1,3-cyclohexanedicarboxylic acid and chiral cis-(1R,3S)-(+)-camphoric acid with trimethyltin chloride under hydrothermal condition. All complexes were characterized by elemental analysis, IR, 1H NMR, 13C NMR, 119Sn NMR and X-ray crystallography. The structural analyses show that complex 1 has a 1D infinite polymeric chain in which 5-nitroisophthalic acid acts as a tetradentate ligand coordinating to dimethyltin(IV) ions, complexes 2, 3 and 4 possess 2D polymeric structures in which dicarboxylate acid act as tridentate or tetradentate ligands coordinating to dimethyltin(IV) ions, complex 5 possesses a irregular 3D framework in which chiral cis-(1R,3S)-(+)-camphoric acid acts as a tetradentate ligand coordinating to dimethyltin(IV) ions.  相似文献   

16.
The synthesis of 2′,3′-di-(4-tolylthio)uridine (5) and {1-β-(=D)-[2,3-di-(4-tolylthio)xylofuranosyl]}uracil (7) from (1-β-(=D)-lyxofuranosyl)uracil (3) and uridine, respectively, is described.  相似文献   

17.
The direct and indirect stereochemical resolution of the enantiomers of free and N-protected (R,S)-2′,1′:1,2;1″,2″:3,4-dinaphthcyclohepta-1,3-diene-6-amino-6-carboxylic acid (Bin) was achieved by high-performance liquid chromatographic methods. The direct separation was carried out on a β-cyclodextrin-based chiral stationary phase, ChiraDex, and the indirect resolution by applying pre-column derivatization with 2,3,4,6-tetra-O-acetyl-β-

-glucopyranosyl isothiocyanate.  相似文献   

18.
The O,O-diethyl thiophosphonate functional group has been introduced on position 2 of a pyrrole heterocycle following a two steps sequence that makes use of a [1,2] base-induced rearrangement applied for the first time to a O,O-diethyl thiophosphoramide intermediate. This rearrangement has been studied by low temperature NMR and the intermediates have been fully characterized. The coordination of this monoanionic bidentate (N,Ssp2) ligand to silver or palladium is studied The bidentate ligand 2 (O,O-diethyl pyrrol-2-ylthiophosphonate), associated with a palladium precursor, produces in the presence of triethylamine the complex trans-[Pd(η2-2′)2] 3 (2′ is deprotonated ligand 2). Ligand 2 also reacts with silver oxide in dichloromethane to give an unstable complex 2′-Ag that can be stabilized by addition of triphenylphosphine to produce the coordination complex 4 [Ag((η2-2′)(PPh3)2].  相似文献   

19.
Assembly of 5-sulfosalicylic acid (H3L) and d10 transition metal ions (CdII, AgI) with the neutral N-donor ligands produces five new complexes: [Cd2(HL)2(4,4′-bipy)3]n·2nH2O (1), {[Cd2(μ2-HCO2)2(4,4′-bipy)2(H2O)4][Cd(HL)2(4,4′-bipy)(H2O)2]}n (2), {[Cd(4,4′-bipy)(H2O)4][HL]·H2O}n (3), [Cd(HL)(dpp)2(H2O)]n·4nH2O (4), {[Ag(4,4′-bipy)][Hhbs]}n (5) (4,4′-bipy=4,4′-bipyridine, dpp=1,3-di(pyridin-4-yl)propane, H2hbs=4-hydroxybenzenesulfonic acid, the decarboxylation product of H3L). Complex 1 adopts a 5-connected 3D bilayer topology. Complex 2 has the herring-bone and ladder chain, which are extended to a 3D network via hydrogen bonding. In 3–4 complexes, 3 is a 3D supermolecular structure formed by polymeric chains and 2D network of HL2−, while 4 gives the double-stranded chains. In 5, ladder arrays are stacked with the 2D networks of Hhbs anions in an –ABAB– sequence. Complexes 1–4 display green luminescences in solid state at room temperature, while emission spectra of 3 and 4 show obvious blue-shifts at low temperature.  相似文献   

20.
Two new 24-hydroxylated asterosaponins,sodium(20R,24S)-6α-O-(4-O-sodiumsulfato-β-D-quinovopyranosyl)-5α-cholest-9(11)-en-3β,24-diol 3-sulfate(1) and sodium(20R,24S)-6α-O-[3-O-methyl-β-D-quinovopyranosyl-(1→2)-β-D-xylopyranosyl-(1→3)-β-D-glucopyranosyl]-5α-cholest-9(11)-en-3β,24-diol 3-sulfate(2),were isolated from the starfish Culcita novaeguineae.Their structures were elucidated by extensive spectral analysis and chemical evidences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号