首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
13C Spin–lattice relaxation (SLR) times in the laboratory frame have been measured at room temperature as a function of field in the range of 500 to 5000 G on two natural type Ib and Ia diamonds after dynamic nuclear polarization. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Three different nuclear SLR paths, namely that due to electron SLR and two types of three spin processes, are discussed. The one three-spin process (TSP) (type 1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a 13C spin while the other process (type 2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole–dipole interaction reservoirs decreases with an increase in field intensity, thus forming a bottleneck in the 13C relaxation path due to the type 1 TSP. The contribution of TSP of type 1 dominates that due to electron SLR and the type 2 TSP in relaxing the 13C nuclei in type Ib diamond from about 1200 to 5000 G, while for type Ia diamond it dominates from 500 up to about 2200 G. In type Ia diamond over the range 2200 to 5000 G it seems that the type 2 TSP, which involves electrons of neighboring P2 hyperfine lines, dominates that of electron spin–lattice and the type 1 TSP. Over the range 500 to about 1200 G, a field-dependent electron SLR mechanism associated with N3 centers appears to dominate the 13C SLR.  相似文献   

2.
EPR, 13C NMR and TEM study of ultradisperse diamond (UDD) samples is reported. The compounds show a high concentration of paramagnetic centers (up to 1020 spin/g), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. The anomalous reduction in the spin-lattice relaxation time of 13C (from several hours in natural diamond to ∼150 ms in UDD clusters) is attributed to the interaction between the unpaired electrons of the paramagnetic centers and nuclear spins. 13C NMR line-width reflects the fact that the structure of the UDD surface is distorted in comparison to the ‘bulk’ diamond structure.  相似文献   

3.
Spin-lattice relaxation mechanisms in kaolinite have been reinvestigated by magic-angle spinning (MAS) of the sample. MAS is useful to distinguish between relaxation mechanisms: the direct relaxation rate caused by the dipole-dipole interaction with electron spins is not affected by spinning while the spin diffusion-assisted relaxation rate is. Spin diffusion plays a dominant role in 1H relaxation. MAS causes only a slight change in the relaxation behavior, because the dipolar coupling between 1H spins is strong. 29Si relaxes directly through the dipole-dipole interaction with electron spins under spinning conditions higher than 2 kHz. A spin diffusion effect has been clearly observed in the 29Si relaxation of relatively pure samples under static and slow-spinning conditions. 27Al relaxes through three mechanisms: phonon-coupled quadrupole interaction, spin diffusion and dipole-dipole interaction with electron spins. The first mechanism is dominant, while the last is negligibly small. Spin diffusion between 27Al spins is suppressed completely at a spinning rate of 2.5 kHz. We have analyzed the relaxation behavior theoretically and discussed quantitatively. Concentrations of paramagnetic impurities, electron spin-lattice relaxation times and spin diffusion rates have been estimated.  相似文献   

4.
Magnetic parameters and the relaxation behavior of paramagnetic centers in an iodine-doped poly(tetrathiafulvalene) semiconductor with a d.c. conductivity of 10?5 S·cm?1 have been studied using mainly the 2 mm waveband EPR technique in the temperature range of 110–270 K. The EPR line shape analysis confirms the existence of immobile radicals pinne on short polymer chains and mobile polarons with different relaxation parameters in slightly doped poly(tetrathiafulvalene). The temperature dependences of electron spin-lattice and spin-spin relaxation times of paramagnetic centers of both types have been determined independently using the saturation method at the operation frequency ν e = 140 GHz. An anisotropic slow libration of immobile polarons with an activation energy of 0.02 eV have been registered for the first time using the saturation transfer EPR method. The temperature dependences of intrachain diffusion and interchain hopping rates in poly(tetrathiafulvalene) are determined from theT 1 andT 2 EPR data. The interchain spin dynamics is shown to correlate with libration of polarons trapped on polymer chains and is in good agreement with a hopping charge transport mechanism.  相似文献   

5.
The EPR spectrum of the spin 1/2 paramagnetic centers with a relatively slow relaxation is considered in the case when they are coupled via the Heisenberg exchange interaction to partners which have short times of the longitudinal and transverse paramagnetic relaxation. Under these conditions only the EPR line of paramagnetic centers with a relatively slow relaxation is detectable in experiment. The shape of this line is analyzed by solving numerically kinetic equations for the spin density matrix for simple model systems. Depending on a ratio between the exchange integral and the paramagnetic relaxation rates of partner spins, the EPR line shifts in opposite directions. For moderate relaxation rates, as the relaxation rates decrease, the EPR line shifts toward the gravity center of the total EPR spectrum. In the case of extremely fast relaxation, as the relaxation rates decrease, the reverse shift of the EPR line is expected, the line shifts away from the gravity center of the total EPR spectrum. This type of the non-monotonous line shift was experimentally observed for the monocrystal of [CuNd2(C4O4)4(H2O)16] · 2H2O when relaxation rates were changed by temperature variation.  相似文献   

6.
This communication presents new data on phosphorus-containing centers in synthetic diamonds grown in the P–C system by high-pressure high-temperature (HTHP) method and annealed in the temperature range of 2,073–2,573 K. The electron paramagnetic resonance (EPR) study has shown that as-grown at 1,873 K diamonds contain single substitutional nitrogen (P1) and single substitutional phosphorus (MA1) centers. The main part of the spin density in the MA1 center locates on the carbon atom C1 separated from phosphorus by one carbon atom. HPHT annealing (7 GPa, 2,073–2,273 K) results in aggregating substitutional nitrogen and phosphorus atoms. On the first step of annealing (2,073 K) of as-grown diamonds nitrogen–phosphorus NIRIM8 (NP1) centers are created. It is supposed that nitrogen and phosphorus atoms in this center are separated by two carbons. Further temperature increasing shifts the nitrogen atom toward phosphorus and creates two new nitrogen–phosphorus centers NP2 and NP3 with the supposed structures C1–N–C–P and N–P–C1, respectively. The main part of the spin density in MA1, NIRIM8 (NP1), NP2 and NP3 is located on the carbon atom C1. Annealing these samples in the temperature range of 2,073–2,273 K has shown vanishing of NIRIM8 and increasing of NP2 and NP3 centers. HPHT annealing of diamonds at 2,573 K significantly changes the electron paramagnetic resonance (EPR) spectra: all previous nitrogen–phosphorus centers disappear and two new phosphorus centers NP4 and NP5 are created. Features of these centers are g ≈ 2.001 and high spin density located on the phosphorus atoms. The NP5 center is sensitive to X-ray irradiation and low-temperature annealing. The EPR spectra of both these centers are due to the hyperfine structure of one phosphorus atom. The structures of all phosphorus-containing centers are discussed.  相似文献   

7.
Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested as contact shift perturbations (19F and 13C NMR) and spin-lattice relaxation enhancement (19F and 1H NMR), has been shown to be useful for precisely determining immersion depth, membrane protein secondary structure, and overall topology of membrane proteins. We have investigated the influence of oxygen on 19F and 13C NMR spectra and spin-lattice relaxation rates of a semiperfluorinated detergent, (8,8,8)-trifluoro (3,3,4,4,5,5,6,6,7,7)-difluoro octylmaltoside (TFOM) in a model membrane system, to determine the dominant paramagnetic spin-lattice relaxation and shift-perturbation mechanism. Based on the ratio of paramagnetic spin-lattice relaxation rates of 19F and directly bonded 13C nuclei, we conclude that the dominant relaxation mechanism must be dipolar. Furthermore, the temperature dependence of oxygen-induced chemical shift perturbations in 9F NMR spectra suggests a contact interaction is the dominant shift mechanism. The respective hyperfine coupling constants for 19F and 13C nuclei can then be estimated from the contact shifts <(deltav/v0)19F> and <(deltav/v0)13C>, allowing us to estimate the relative contribution of scalar and dipolar relaxation to 19F and 13C nuclei. We conclude that the contribution to spin-lattice relaxation from the oxygen induced paramagnetic scalar mechanism is negligible.  相似文献   

8.
Proton spin-lattice relaxation by paramagnetic centers may be dramatically enhanced if the paramagnetic center is rotationally immobilized in the magnetic field. The details of the relaxation mechanism are different from those appropriate to solutions of paramagnetic relaxation agents. We report here large enhancements in the proton spin-lattice relaxation rate constants associated with organic radicals when the radical system is rigidly connected with a rotationally immobilized macromolecular matrix such as a dry protein or a cross-linked protein gel. The paramagnetic contribution to the protein-proton population is direct and distributed internally among the protein protons by efficient spin diffusion. In the case of a cross-linked-protein gel, the paramagnetic effects are carried to the water spins indirectly by chemical exchange mechanisms involving water molecule exchange with rare long-lived water molecule binding sites on the immobilized protein and proton exchange. The dramatic increase in the efficiency of spin relaxation by organic radicals compared with metal systems at low magnetic field strengths results because the electron relaxation time of the radical is orders of magnitude larger than that for metal systems. This gain in relaxation efficiency provides completely new opportunities for the design of spin-lattice relaxation based contrast agents in magnetic imaging and also provides new ways to examine intramolecular protein dynamics.  相似文献   

9.
Finely dispersed carbonizate powders were studied with the aim of revealing their suitability for producing hyperpolarized noble gases. In the temperature and frequency dependences obtained over a wide range of temperatures and magnetic fields for the spin-lattice relaxation times of the magnetic moments of 3He, 1H, and 13C nuclei, anomalous features caused by the suppression of the exchange between surface paramagnetic centers in a magnetic field were observed. It is shown that the interaction with magnetic moments of the 1H nuclei situated near the paramagnetic centers is the main polarization-leakage channel for the noble-gas nuclear spins.  相似文献   

10.
Changes in individual groups of paramagnetic centers after reduction and reductive butylation of Polish flame coal (70.8 wt.% C) were studied by electron paramagnetic resonance (EPR) spectroscopy. The modern method of reductive butylation of coal in a potassium-liquid ammonia system was used. This process increases the solubility of coal in organic solvents. Microwave saturation of EPR spectra was applied to test the spin-lattice relaxation in coal. The measured EPR spectra were a superposition of broad (ΔB pp, 0.42–0.49 mT) and narrow (ΔB pp, 0.09–0.13 mT) Lorentz lines. Paramagnetic centers located in simple and multiring aromatic structures were responsible for the broad and narrow lines, respectively. Microwave saturation indicates that slow and fast spin-lattice relaxation processes are characteristic for these two types of structures in the original coal. A decrease of the microwave power saturation of the broad Lorentz line after a single reduction of coal was observed. It increased for both 4 times reduced coal and reductively butylated coal. As the result of multiple reduction and butylation, spin-lattice relaxation processes in simple coal aromatic units were fastened. The narrow Lorentz lines of both 4 times reduced and reductively butylated coal were saturated and the spin-lattice relaxation time increased.  相似文献   

11.
The electron spin-lattice and spin-spin phase relaxation measurements of Cu2+ ions in various crystals are reviewed and discussed. Examples of the Debye temperature determination from a wide temperature range measurements of the spin-lattice relaxation time T1 are shown. An influence of the Jahn-Teller dynamics on T1 is presented. The phase relaxation described by the phase memory time TM is affected by temperature due to the spin packet width modulation by molecular motions. The TM is anisotropic in crystals and can be different for different hyperfine lines of an EPR spectrum.  相似文献   

12.
Nonexponential spin-lattice relaxation is often observed for rare spin nuclei in the solid state. Deviation from single-component decay may be amplified by the coupling of rare spin nuclei to paramagnetic centers. Nonexponential spin-lattice relaxation was observed in derivatized silica gels resins. This phenomenon was localized and enhanced when paramagnetic transition metal cations were bound to surface functional groups. A stretched exponential analysis method was determined to be robust in fitting nonexponential relaxation curves for silica gels both with and without bound paramagnetic ions. Spin-lattice relaxation rates (T1−1) for functional group nuclei increased as a function of percent surface coverage with metal ion. The magnitude of the relaxation rate increase was dependent upon internuclear distances from the paramagnetic center. At low surface coverages, a semi-random distribution of paramagnetic centers increased the degree of stretching of spin-lattice relaxation decays, as measured by decreases in the calculated stretching parameter β. At higher surface coverages, calculated β values reached a limiting value, indicating that while the spin-diffusion mechanism in metal-ex-changed silica gels is restricted, it is not completely diminished.  相似文献   

13.
Single crystals and microcrystals Si: B enriched with 29Si isotopes have been studied using nuclear magnetic resonance and electron paramagnetic resonance (EPR) in the temperature range from 300 to 800 K. It has been found that an increase in the temperature from 300 to 500 K leads to a change in the kinetics of the relaxation of the saturated nuclear spin system. At 300 K, the relaxation kinetics corresponds to direct electron–nuclear interaction with inhomogeneously distributed paramagnetic centers introduced by the plastic deformation of the crystals. At 500 K, the spin relaxation occurs through the nuclear spin diffusion and electron–nuclear interaction with an acceptor impurity. It has been revealed that the plastic deformation affects the EPR spectra at 9 K.  相似文献   

14.
Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polymer, namely, localized and mobile polarons with the concentration ratio and susceptibility depending on the irradiation dose and temperature. Superslow torsion motion of the polymer chains was studied by the saturation transfer method at D-band EPR. Additional information on the polymer chain segment dynamics was obtained by the spin probe method at X-band EPR. Spin-spin and spin-lattice relaxation times were measured separately by the steady-state saturation method at D-band EPR. Intrachain and interchain spin diffusion coefficients and conductivity arising from the polaron dynamics were calculated. It was shown that the polaron dynamics in laser-modified polymer is affected by the spin-spin interaction. The interchain charge transfer is stimulated by torsion motion of the polymer chains, whereas the total conductivity of irradiated PATAC is determined mainly by the dynamic of diamagnetic charge carriers. Magnetic, relaxation and dynamics parameters of PATAC were also shown to change during polymer storage.  相似文献   

15.
Transient nuclear magnetic resonance measurements of spin-lattice and spin-spin relaxation times have been carried out as a function of temperature and pressure on 3He adsorbed on two types of commercial zeolite. In addition, the number of atoms adsorbed on unit weights of zeolite was determined by spin counting. Mechanisms for spin-spin relaxation were provided by dipole interactions among helium spins and spin-lattice relaxation was probably due to atomic motion.  相似文献   

16.
The rates of two types of nuclear spin-lattice relaxation are compared. Transverse relaxation of nuclear spins interacting with paramagnetic centers is also examined under the assumption that the paramagnetic centers form two-level tunneling systems. The transverse relaxation rate is calculated and it is shown that at certain temperatures the transverse relaxation rate is governed by the two-level systems. Fiz. Tverd. Tela (St. Petersburg) 39, 1210–1212 (July 1997) Deceased  相似文献   

17.
Electron paramagnetic resonance (EPR) and related spectroscopic tools remain among the most important probes of structure and function of natural photosynthetic systems. Indeed, the challenging questions in the study of photosynthesis have to a great extent dictated the directions taken in the development of EPR and associated spectroscopies. In this overview we demonstrate, with recent examples from our laboratories, the potential of high-frequency and time-resolved EPR spectroscopy to reveal unique information about electron transfer processes and the structure of photosynthetic systems. A common feature of these experiments is that they probe hyperfine interactions of the spincorrelated radical pair. Thus, the analysis of the results requires consideration of three interacting spins: two correlated electron spins with one nuclear spin. The results illustrate the importance of resolving nuclear hyperfine structure for obtaining details of structure-function relationships in photosynthetic electron transfer.  相似文献   

18.
The (29)Si spin-lattice relaxation in porous silica-based material 1, doped by ions Mn(2+) at a Si/Mn ratio of 3.5, is non-exponential, independent of magic-angle spinning (MAS) rates and governed by direct dipolar coupling between electron and nucleus where an electron relaxation time is estimated to be about 10(-8)s. In the absence of mutual energy-conserving spin flips (spin diffusion) in 1, the (29)Si T(2) time increases linearly with spinning rates. None was observed in diamagnetic porous system 2. The unexpected (29)Si T(2) dependence has been interpreted in terms of the large bulk magnetic susceptibility (BMS) effects. It has been shown that editing the (29)Si Hahn-echo MAS NMR spectra eliminates wide lines, belonging to (29)Si nuclei in the proximity of paramagnetic centers, and reduces the BMS broadenings in sideband patterns for nuclei remote from these centers.  相似文献   

19.
The effects of methyl rotation on electron spin-lattice relaxation times were examined by pulsed electron paramagnetic resonance for the major radicals in gamma-irradiated polycrystalline alpha-amino isobutyric acid, dimethyl-malonic acid, and L-valine. The dominant radical is the same in irradiated dimethyl-malonic acid and alpha-amino isobutyric acid. Continuous wave saturation recovery was measured between 10 and 295 K at S-band and X-band. Inversion recovery, echo-detected saturation recovery, and pulsed electron-electron double resonance (ELDOR) data were obtained between 77 and 295 K. For the radicals in the three solids, recovery time constants measured by the various techniques were not the same, because spectral diffusion processes contribute differently for each measurement. Hyperfine splitting due to the protons of two methyl groups is resolved in the EPR spectra for each of the samples. Pulsed ELDOR data were obtained to characterize the spectral diffusion processes that transfer magnetization between hyperfine lines. Time constants were obtained for electron spin-lattice relaxation (T(1e)), nuclear spin relaxation (T(1n)), cross-relaxation (T(x1)), and spin diffusion (T(s)). Between 77 and 295 K rapid cross-relaxation (deltaM(s) = +/- 1, deltaM(I) = -/+ 1) was observed for each sample, which is attributed to methyl rotation at a rate that is approximately equal to the electron Larmor frequency. The large temperature range over which cross-relaxation was observed suggests that methyl groups in the radical and in the lattice, with different activation energies for rotation, contribute to the rapid cross-relaxation. Activation energies for methyl and amino group rotation between 160 and 1900 K (1.3-16 kJ/mol) were obtained by analysis of the temperature dependence of 1/T(1e) at S-band and X-band in the temperature intervals where the dynamic process dominates T(1e).  相似文献   

20.
The influence of boson peak (BP) excitations on low-temperature spin-lattice relaxation rate of a paramagnetic center embedded in a glassy matrix is investigated in the context of multi-frequency electron paramagnetic resonance (EPR) detection. In the theoretical analysis, the transition rate of spin one-half in the presence of a phonon field is calculated within the approximation of Fermi's golden rule. Several phonon densities of states are compared, among which one originating from a model of quasi-localized vibrations has been introduced into electron spin relaxation formalism for the first time. The respective frequency dependencies of spin-lattice relaxation rates are predicted which should lead to observable effects of BP modes if a multi-frequency study at very low temperatures is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号